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In this paper, we state and prove the Wigner-Eckart theorem. Then, we show its applicability by
calculating electric dipole transitions.

I. INTRODUCTION

The Wigner-Eckart theorem is a pivotal result in quan-
tum mechanics that bridges abstract mathematical formal-
ism with practical applications. This theorem significantly
simplifies the computation of matrix elements of spherical
tensor operators by leveraging the underlying symmetries
of systems with rotational invariance.
First introduced by Eugene Wigner and Carl Eckart,

the theorem elegantly combines the abstract principles of
group theory with practical computational methodologies.
The theorem’s key insight is the decomposition of matrix
elements into two distinct components: a geometrical
factor, governed by Clebsch-Gordan coefficients, and a
reduced matrix element that encapsulates the system’s
dynamical properties. This allows us to easily compute
matrix elements that differ by geometry (rather than
dynamics) just by knowing Clebsch-Gordan coefficients.
This is what makes this theorem so powerful.

This paper aims to provide a comprehensive exploration
of the Wigner-Eckart theorem. We will first begin with
a review of the essential concepts of angular momentum
theory and then introduce the concept of spherical tensors.
Then we will go on to stating and proving the Wigner-
Eckart theorem, and finally, we will present this theorem’s
applicability by computing electric dipole transitions.

II. ROTATIONS AND ANGULAR MOMENTUM

In classical mechanics, angular momentum is defined
as

L = r× p (1)

and when shifting to quantum mechanics, we get the
momentum operator by using the same equation but with
position and momentum operators. However, a more
fundamental way to understand angular momentum is
through rotations. (For instance, spin is not well defined
with (1)).

Let R be an operator that rotates the system. For
example, in R3, this can be represented with a 3 × 3
orthogonal matrix, which is useful to describe orbital
angular momentum. However, for spin, we can represent
R with a 2×2 unitary matrix where now the matrix acts on
spinors (rather than vectors). Technically, these matrices
can have a determinant of ±1 but in this paper, we will
be only concerned with orthogonal/unitary matrices with
determinant 1. These are known as proper rotations
where the rotation preserves the orientation structure.

Now in quantum mechanics, we are considered with the
Hilbert (or ket) space of the system, so we can associate
R with the operator D(R) that acts on vectors in the ket
space:

|ψ⟩R = D(R) |ψ⟩ (2)

The orthogonality of R means that D(R) is unitary.
The key idea is to describe D(R) as a sequence of in-

finitesimal rotations. In general, an infinitesimal operator
can be written as

Uϵ = 1− iGϵ (3)

where G is some Hermitian operator and ϵ is the infinites-
imal change. For example, in the case of translations, we
set G = p/ℏ and ϵ = dx and defined p to be the momen-
tum operator. In a similar fashion, for rotations around
the unit vector n̂, we set

G =
J · n̂
ℏ

, ϵ = dϕ,

and define J to be the angular momentum operator. Es-
sentially, we define angular momentum to generate rota-
tion (similar to classical mechanics).
Therefore, the infinitesimal rotation operator is

Dn̂(dϕ) = 1− i

(
J · n̂
ℏ

)
dϕ. (4)

Now if we want to rotate by ϕ, we can split this into N
rotations of ϕ/N and take the limit as N → ∞. This
gives us

Dn̂(ϕ) = lim
N→∞

(
1− i

(
J · n̂
ℏ

)
ϕ

N

)N

= exp

(
− i(J · n̂)ϕ

ℏ

)
. (5)

(Notice this has the same form as the unitary time evolu-
tion operator where instead of rotation, the Hamiltonian
generates time evolution). Of course, every n̂ and ϕ can be
associated with rotation operator R, so D(R) := Dn̂(ϕ).

It is often useful to consider the matrix representation
of D(R):

D
(j)
m′m(R) = ⟨j,m′|D(R) |j,m⟩ . (6)

This is known as the Wigner D-matrix. Notice that j
stays the same for the bra and ket and this is because
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D(R) doesn’t affect the value of j. Since D(R) commutes
with J2, we have

J2D(R) |j,m⟩ = D(R)J2 |j,m⟩
= ℏ2j(j + 1)D(R) |j,m⟩ ,

so D(R) |j,m⟩ is a eigenvector of J2 with a total angular
momentum of j i.e. D(R) |j,m⟩ = |j,m′⟩ for some m′

(between −j and j). Therefore,

⟨j′,m′|D(R) |j,m⟩ = 0 (7)

for all j′ ̸= j.

Now if we visualize D
(j)
m′m(R) as an infinitely big ma-

trix where rows and columns represent all the angular
momentum eigenkets, we might get some random matrix
depending on how we order the basis vectors. However, if
we group the eigenkets by their total angular momentum
j, we will get a block diagonal matrix because of (7).
However, it turns out (because of results from representa-
tion theory) that each (2j + 1)× (2j + 1) matrix in the
diagonal cannot be broken into smaller blocks no matter
what R is i.e. they are irreducible [1]. Therefore, the set of

matrices D
(j)
m′m(R) characterized by a definite j is called

the rank-j irreducible representation of the group formed
by the rotation operators D(R) (essentially SO(3)).

III. SPHERICAL TENSOR OPERATORS

Now that we have a way of rotating, we can rotate
operators. We require that the expected value of the
rotated operator in the original state must be the same
as the original operator in the rotated state. If A and |ψ⟩
are the original operator and state and A′ and |ψ′⟩ are
the rotated operator and state, this requirement can be
written as

⟨ψ|A′ |ψ⟩ = ⟨ψ′|A |ψ′⟩ . (8)

Using the definition of rotated states, |ψ′⟩ = D(R) |ψ⟩,
we get

A′ = D†(R)AD(R). (9)

Recall that this is how we defined vector operators –
we required that rotating in the ket space produced the
same result as rotating the vector:

D†(R)ViD(R) = Rii′Vi′ , (10)

where we sum over repeated indices. (In this paper,
indices are assumed to range from 1 to 3 unless specified
otherwise).
Plugging in the infinitesimal form of D(R) from (4),

we get the following commutation relation

[Vi, Jj ] = iℏϵijkVk (11)

which is also an equivalent way of defining vector opera-
tors.

Similar to vector operators, we can also define tensor
operators. For this paper, we can essentially think of
tensors as multidimensional arrays, a generalization of
vectors and matrices. (For readers who are more math-
ematically inclined, we assume the tensors only contain
contravariant components). These are known as Cartesian
tensors, and as operators they satisfy the following:

D†(R)Ti,j,...D(R) = Rii′Rjj′ · · ·Ti′j′,..., (12)

which is essentially a generalization of (10). (In this paper,
we will refer to tensor operators simply as “tensors,” with
clarification provided in cases of potential ambiguity).
The number of indices the tensor has is known as its rank.

One simple way of creating a Cartesian tensor is through
two vectors, known as a dyadic tensor. We can notice that
the space spanned by all dyadic Cartesian tensors, denoted
by {Tij}, is invariant under rotations since a rotated
dyadic tensor can be written as a linear combination of
other dyadic tensors, as seen in (12). However, this space
is reducible, meaning that it can be broken up into smaller
(non-trivial) invariant subspaces that span the original
space.
To find the irreducible (invariant) subspaces that

makeup {Tij}, we can first start by breaking {Tij} up
into subspaces spanned by symmetric and antisymmetric
tensors, denoted {Sij} and {Aij}, respectively. The di-
mension of {Sij} is 6 since for a symmetric tensor there
are 3 independent components in the diagonal and 3 more
in the off-diagonal. Next, the dimension of {Aij} is 3
since the diagonal components have to be 0, so we only
have 3 independent components in the off-diagonal. These
dimensions add up to 9, the dimension of {Tij}, so any
tensor in {Tij} can be written as a linear combination
of tensors in {Sij} and {Aij} i.e. these subspaces span
{Tij}.
To demonstrate the invariance of {Sij} and {Aij} we

can write a general symmetric tensor as

Sij =
1

2
(Tij + Tji) (13)

and a general antisymmetric tensor as

Aij =
1

2
(Tij − Tji), (14)

where Tij is some rank 2 tensor. Therefore, to see that
{Sij} and {Aij} are invariant, we can apply the rotation
formula:

D†(R)SijD(R) =
1

2
(Rii′Rjj′(Ti′j′ + Tj′i′)) (15)

D†(R)AijD(R) =
1

2
(Rii′Rjj′(Ti′j′ − Tj′i′)) (16)

where we see swapping the indices does not change the
right-hand side of (15), but it does change the sign for
(16).
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The next question is whether {Sij} and {Aij} are re-
ducible (or irreducible). It turns out that {Aij} is irre-
ducible since it rotates as a vector. More specifically, if we

create a vector V⃗ out of the independent components A12,
A13, and A23, rotating Aij with R is equivalent to rotat-

ing V⃗ with some other rotation operator R′. This can
be seen by manually writing out how these independent
components transform under R and checking that they
transform as an orthogonal matrix (with determinant 1).
Therefore, Aij is irreducible if and only if R3 is irreducible.
However, the latter is true since the subspaces of R3 are
lines and planes and there clearly do not exist lines and
planes that always rotate onto themselves. This proves
that {Aij} is irreducible.
On the contrary, {Sij} is reducible. We can write a

symmetric tensor as

Sij =
1

3
tδij +

(
Sij −

1

3
tδij

)
(17)

where t is the trace of Sij and δij is the Kronecker delta.
Essentially, we are breaking Sij into a multiple of the iden-
tity tensor and a traceless symmetric tensor. Let us call
these two subspaces {Xij} and {Yij}, respectively. These
subspaces span {Sij} since the former has 1 independent
component while the latter has 5 which adds up to 6,
the number of independent components of a symmetric
tensor.
To see that {Xij} is invariant, we consider how δij

transforms under a rotation:

δ′ij = Rii′Rjj′δi′j′ = Rii′Rji′ = δij

where the last inequality is because R is orthogonal.
Therefore, since δij is invariant under rotations, tensors
in {Xij} rotate onto themselves. Next, to prove the in-
variance of {Yij}, we notice that the trace of tensor does
not change under rotations so rotating a tensor in {Yij}
results in a traceless tensor.
Now we prove that these subspaces are irreducible.

{Xij} is clearly irreducible since it does not contain any
smaller non-trivial subspaces. Similar to {Aij}, we see
that {Yij} rotates like a vector in R5 so this subspace is
also irreducible.

To summarize, we broke up a general dyadic tensor Tij
into three terms:

Tij =
tδij
3

+
Tij − Tji

2
+

(
Tij + Tji

2
− tδij

3

)
(18)

where each term is a tensor in an irreducible subspace of
{Tij}. We call these irreducible tensors spherical tensors.

Next, we rigorously define this notion. First, we notice
that the dimensions of the subspaces are 1, 3, 5 which is
the same as the multiplicities of j = 0, 1, 2. This suggests
that the irreducible tensors on the right-hand side of
(18) transform like spherical harmonics with l = 0, 1, 2.
Therefore, it is natural to require that general spherical
tensors transform like spherical harmonics.

First, we write out how spherical harmonics transform
under rotations. More specifically, we will be considering
passive rotations where the direction ket |n̂⟩ rotates to
|n̂′⟩ := D(R) |n̂⟩. Now we have

Y m
l (n̂′) = ⟨n̂′|l,m⟩

= ⟨n̂|D†(R) |l,m⟩

=

l∑
m′=−l

D
(l)∗

mm′(R)Y
m′

l (n̂)

where the star represents a complex conjugate. Now all
of this is to motivate the following definition:

Definition. A spherical tensor operator T
(k)
q of rank k

with (2k+1) components is a tensor operator that rotates
as

D†(R)T (k)
q D(R) =

k∑
q′=−k

D
(k)∗

qq′ (R)T
(k)
q′ . (19)

Plugging in the infinitesimal form of D(R) from (4)
and simplifying gives us

[J · n̂, T (k)
q ] =

k∑
q′=−k

T
(k)
q′ ⟨k, q′|J · n̂ |k, q⟩ . (20)

This essentially gives the commutation relation of T
(k)
q

with each component of J, and we can combine these
relations to get

[Jz, T
(k)
q ] = ℏqT (k)

q (21)

and

[J±, T
(k)
q ] = ℏ

√
(k ∓ q)(k ± q + 1)T

(k)
q±1. (22)

Just like (11), these commutation relations are an equiva-
lent way of defining spherical tensors.

IV. WIGNER-ECKART THEOREM

In this section, we state and prove the Wigner-Eckart
Theorem.

Theorem. The matrix elements of a spherical tensor T
(k)
q

with respect to angular momentum eigenstates satisfy

⟨αjm|T (k)
q |α′j′m′⟩ = ⟨j′m′kq|jm⟩ ⟨α′j′∥T̂ (k)∥αj⟩ (23)

where the double bar (or reduced) matrix element is a
constant of proportionality independent of m, m′, and q.

We have essentially broken the matrix element into
two factors. The first is a Clebsch-Gordan coefficient
for adding j′ and k to get j. This only depends on the
orientation of the system (with respect to the z-axis) and
has no dependence on the actual tensor. The second



4

term is determined by the dynamics of the system and is
independent of the orientation. Therefore, the power of
the Wigner-Eckart theorem is that if we know the matrix
element for one value of q, we can determine the matrix
element for all other values of q using the Clebsch-Gordan
coefficients.
This theorem also immediately gives us the selection

rules, from the Clebsch-Gordan coefficients:

m = m′ + q, (24)

|j′ − k| ≤ j ≤ j + k (25)

Proof. We will show that the left-hand side of (23) is
proportional to the Clebsch-Gordan coefficient which does
not depend on α. Therefore, we will omit this quantum
number to be concise.
We start with the second commutation definition of

spherical tensors (22), which gives us

⟨jm| [Jpm, T (k)
q ] |j′m′⟩

= ℏ
√
(k ∓ q)(k ± q + 1) ⟨jm|T (k)

q±1 |j′m′⟩ .

Next, we can write the left-hand side as

⟨jm| [Jpm, T (k)
q ] |j′m′⟩

= ℏ
√
(j ±m)(j ∓m+ 1) ⟨j(m∓ 1)|T (k)

q |j′m′⟩

− ℏ
√

(j ∓m)(j ±m+ 1) ⟨jm|T (k)
q |j′(m′ ± 1)⟩ .

Now we combine these results to get√
(j ±m)(j ∓m+ 1) ⟨j(m∓ 1)|T (k)

q |j′m′⟩

=
√
(j ∓m)(j ±m+ 1) ⟨jm|T (k)

q |j′(m′ ± 1)⟩

+
√
(k ∓ q)(k ± q + 1) ⟨jm|T (k)

q±1 |j′m′⟩ . (26)

Notice that this is very similar to the recursion relation
for the Clebsch-Gordan coefficients which we can recall
to be√

(J ∓m)(J ±M + 1) ⟨j1m1j2m2|J(M ± 1)⟩

=
√

(j1 ±m1)(j1 ∓m1 + 1) ⟨j1(m1 ∓ 1)j2m2|JM⟩

+
√

(j2 ±m2)(j2 ∓m2 + 1) ⟨j1m1j2(m2 ∓ 1)|JM⟩ .
(27)

Now equations (26) and (27) can be written in the form∑
j

aijxj = 0 and
∑
j

bijyj = 0, (28)

respectively, and the coefficients aij and bij are the same
with the following replacements: J → j, M → −m, j1 →
j′, m1 → −m′, j2 → k, and m2 → −q. The coefficients
are like two vectors x⃗ and y⃗ being perpendicular to another
vector a⃗ (because of (28)). The only way this can happen

is if x⃗ and y⃗ are scalar multiples of each other which
means that xj ∝ yj . Therefore, we get the desired result:

⟨jm|T (k)
q±1 |j′m′⟩ ∝ ⟨j′(−m′)k(−q ∓ 1)|j(−m)⟩

∝ ⟨j′m′k(q ± 1)|jm⟩ .

where the last proportionality is because swapping the
signs only gives us the phase factor (−1)j−j

′−k.
Now the reason why the constant of proportionality (the

double bar matrix element) does not depend on m,m′, q
and only j, j′, k is because the former are the ones being
changed in the recursion relations of (26) and (27) while
the latter are being kept constant.

V. ELECTRIC DIPOLE TRANSITION

One of the main places where the Wigner-Eckart theo-
rem proves to be very useful is electric dipole transitions.
Recall that the transition rate (transition probability per
unit time) from state b to a when an atom interacts with
light is

Ra←b =
4π2

3ℏ2
|dab|2U(ωba), (29)

where d = qr is the dipole operator. Therefore, the hard-
est part of calculating the transition rate is calculating
rab. More specifically, if we are considering hydrogenic
atoms, our goal is to compute matrix elements of the form

⟨nlm| r |n′l′m′⟩ . (30)

This is where we can use the Wigner-Eckart theorem.
Currently, r = ⟨x, y, z⟩ is not a spherical tensor, but we

can construct one out of its components:

T
(1)
±1 = ∓ 1√

2
(x± iy) T

(1)
0 = z (31)

Notice that this has a very similar form to the rank 1
spherical harmonics:

Y 0
1 =

√
3

4π
cos θ =

√
3

4π

z

r

and

Y ±11 = ∓1

2

√
3

2π
sin θe±iϕ

= ∓1

2

√
3

2π

√
x2 + y2

r
(cosϕ± i sinϕ)

= ∓
√

3

4π

x± iy√
2r

.

Therefore, T
(1)
q rotates in the same way as Y

(1)
q , the spher-

ical tensor whose components are the rank 1 spherical

harmonics, so this proves that T
(1)
q is a spherical tensor.
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Now we can compute (30) by calculating matrix ele-

ments of T
(1)
q . We do this by using these relations (derived

from (31):

x =
T

(1)
−1 − T

(1)
1√

2
y = −

T
(1)
−1 + T

(1)
1√

2
z = T

(1)
0 .

To be more concrete, let us consider the 2p→ 1s tran-

sition. This means we must calculate ⟨100|T (1)
q |21m⟩ for

m = −1, 0, 1. Without the Wigner-Eckart theorem, we
would need to compute 3 × 3 = 9 integrals: 3 possibili-
ties for m and 3 possibilities for q. (Technically this can
be reduced down to 3 integrals due to selection rules).
However, the Wigner-Eckart theorem allows us to calcu-
late only one of these integrals and find the rest using
Clebsch-Gordan coefficients.

The first step is to compute one integral (preferably
the simplest one) and then find the double bar matrix

element. Let us compute ⟨100|T (1)
0 |210⟩:

⟨100|T (1)
0 |210⟩

=

∫
1

√
πa

3/2
0

e−r/a0z
1

4
√
2πa

3/2
0

r

a0
e−r/2a0 cos θ dV

=
1

2
√
2a40

∫ π

0

cos2 θ sin θ dθ

∫ ∞
0

r4e−3r/2a0 dr

=
215/2

35
a0

Now (23) gives us

⟨α′j′∥T̂ (1)∥αj⟩ = ⟨100|T (1)
0 |210⟩

⟨1010|00⟩
= −215/2

39/2
a0,

where we used a table for the Clebsch-Gordan coefficient.

We can use this to compute the other two nonzero
matrix elements:

⟨100|T (1)
1 |21(−1)⟩ = −215/2

39/2
a0 ⟨1(−1)11|00⟩

= −215/2

35
a0

and

⟨100|T (1)
−1 |211⟩ = −215/2

39/2
a0 ⟨111(−1)|00⟩

= −215/2

35
a0.

Therefore,

| ⟨100| r |210⟩ |2

= | ⟨100| r |21(−1)⟩ |2 = | ⟨100| r |211⟩ |2 =
215

310
a20,

and combining this with (29) gives us the transition rate
for each possible value of m we can start at. Of course,
this example was relatively simple to demonstrate how
to use the Wigner-Eckart theorem but when we need to
compute more complicated transitions like 4d→ 2p, we
have many more integrals to compute and the Wigner-
Eckart theorem greatly simplifies these computations to
just one integral.

VI. CONCLUSIONS

The Wigner-Eckart theorem represents a cornerstone
in the computational framework of quantum mechanics,
elegantly intertwining abstract mathematical symmetries
with physical applications. By decomposing matrix ele-
ments into orientation-dependent and dynamical compo-
nents, this theorem enables significant simplification of
calculations involving spherical tensor operators.
In this paper, we explored the theorem’s theoretical

underpinnings and showcased its practical utility in the
context of electric dipole transitions. The ability to gener-
alize matrix element computations using Clebsch-Gordan
coefficients highlights the theorem’s power, especially for
complex systems where direct evaluation would be ineffi-
cient and impractical.
As quantum mechanics continues to evolve, the prin-

ciples underlying the Wigner-Eckart theorem remain as
relevant as ever, providing a robust toolset for analyzing
angular momentum-related phenomena in atomic, molec-
ular, and nuclear systems.

ACKNOWLEDGMENTS

The author would like to thank his family for their
continued support and also “depial” and Alex Shvonski
from the MITx community for their feedback.

[1] A. Zee, Group theory in a nutshell for physicists.
Princeton University Press, 2016.

[2] D. J. Griffiths, Introduction to Quantum Mechanics.
Cambridge University Press, 2018.

[3] J. J. Sakurai and J. Napolitano, Modern Quantum
Mechanics. Cambridge University Press, 2021.

[4] B. Zwiebach, Mastering Quantum Mechanics: Essentials,
theory, and applications. The MIT Press, 2022.


	The Wigner-Eckart Theorem
	Abstract
	Introduction
	Rotations and Angular Momentum
	Spherical Tensor Operators
	Wigner-Eckart Theorem
	Electric Dipole Transition
	Conclusions
	Acknowledgments
	References


