Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Using Physics for Mathematics

Nandana Madhukara

sciencekid6002@gmail.com

Agenda	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring
Agen	da				

- The General Idea
- Ocenter of Mass Arguments
- Operation of the ope
- Pick's Theorem
- 6 Multiplicative Scoring

Agenda O	The General Idea	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

The General Idea

Age O	enda	The General Idea	Center of Mass Arguments	Pythagorean The OO	orem Pick's Theorem	Multiplicative Scoring
Т	he Ge	eneral Idea				
	Physi	ical Represent	tation			
	• [Ex: Commutat	ive Property			
			•			

 \bullet \bullet \bullet \bullet

Agenda O	The General Idea ●	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring
The G	General Idea				

Physical Representation

• Ex: Commutative Property

Using Physics

· Ex: Mass Points

Agenda O	The General Idea O	Center of Mass Arguments ●OO	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Agenda O	The General Idea O	Center of Mass Arguments ●OO	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Agenda O	The General Idea O	Center of Mass Arguments ●OO	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Agenda O	The General Idea O	Center of Mass Arguments ●OO	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Agenda O	The General Idea O	Center of Mass Arguments O●O	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring
Media	ans				

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring
Media	ans				

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

Agenda O	The General Idea O	Center of Mass Arguments O●O	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

Agenda O	The General Idea O	Center of Mass Arguments O●O	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

Proof.

Set all vertices to have mass of 1 so centroid is CM of triangle

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

- Set all vertices to have mass of 1 so centroid is CM of triangle
- CM of one side (midpoint) will have mass of 2

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

- · Set all vertices to have mass of 1 so centroid is CM of triangle
- CM of one side (midpoint) will have mass of 2
- Centroid will balance CM of side and third vertex

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

- · Set all vertices to have mass of 1 so centroid is CM of triangle
- CM of one side (midpoint) will have mass of 2
- Centroid will balance CM of side and third vertex
- Centroid splits median into ratio 2:1

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring
Proble	ems				

Question

In triangle ABC, E is on AC so that CE = 3AE and F is on AB so that BF = 3AF. If BE and CF intersect at O and line AO intersects BC at D, compute $\frac{OB}{OE}$ and $\frac{OD}{OA}$.

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Problems

Question

In triangle ABC, E is on AC so that CE = 3AE and F is on AB so that BF = 3AF. If BE and CF intersect at O and line AO intersects BC at D, compute $\frac{OB}{OE}$ and $\frac{OD}{OA}$.

Proof.

We use the following masses:

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem ●O	Pick's Theorem	Multiplicative Scoring
Pytha	gorean Theo	orem			

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem ●O	Pick's Theorem	Multiplicative Scoring
Pytha	gorean Theo	orem			

For a right triangle PQR, the sides satisfy

 $PQ^2 + QR^2 = PR^2.$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem ●O	Pick's Theorem	Multiplicative Scoring
Pvtha	loorean The	orem			

For a right triangle PQR, the sides satisfy

$$PQ^2 + QR^2 = PR^2.$$

· Consider the following setup with air inside

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem O●	Pick's Theorem	Multiplicative Scoring
Pytha	gorean Theo	orem (cont.)			

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Pythagorean Theorem (cont.)

Proof (Cont.)

• The pressure will cause the following forces (aerial view)

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem O●	Pick's Theorem	Multiplicative Scoring
	-	(

Pythagorean Theorem (cont.)

Proof (Cont.)

The pressure will cause the following forces (aerial view)

Box doesn't move so torques must cancel out:

 $F_{PQ} imes PQ/2 = F_{RP} imes PR/2 + F_{QR} imes QR/2$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem O●	Pick's Theorem	Multiplicative Scoring
B 11	–				

Pythagorean Theorem (cont.)

Proof (Cont.)

The pressure will cause the following forces (aerial view)

Box doesn't move so torques must cancel out:

 $F_{PQ} imes PQ/2 = F_{RP} imes PR/2 + F_{QR} imes QR/2$

If pressure is p,

$$ph(PQ^2)/2 = ph(PR^2)/2 + ph(QR^2/2)$$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem ●O	Multiplicative Scoring

Pick's Theorem

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem ●O	Multiplicative Scoring
Pick's	Theorem				

Let P be a lattice polygon where all its vertices are lattice points. The area of P is the sum of its interior points plus half its boundary points minus 1:

area of $P = |int P| + 1/2 \cdot |\partial P| - 1$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem ●O	Multiplicative Scoring
Pick's	Theorem				

Let P be a lattice polygon where all its vertices are lattice points. The area of P is the sum of its interior points plus half its boundary points minus 1:

area of $P = |int P| + 1/2 \cdot |\partial P| - 1$

Proof.

 For each lattice point, release volume 1 of water so volume above P is area of P

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem ●O	Multiplicative Scoring
Pick'e	Theorem				

Let P be a lattice polygon where all its vertices are lattice points. The area of P is the sum of its interior points plus half its boundary points minus 1:

area of $P = |int P| + 1/2 \cdot |\partial P| - 1$

- For each lattice point, release volume 1 of water so volume above P is area of P
- Because of symmetry of lattice plane, net flow of water across edge is 0
 WLOG assume boundary of *P* is impermeable

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem ●O	Multiplicative Scoring
Dick's	Theorem				

Let P be a lattice polygon where all its vertices are lattice points. The area of P is the sum of its interior points plus half its boundary points minus 1:

area of $P = |int P| + 1/2 \cdot |\partial P| - 1$

- For each lattice point, release volume 1 of water so volume above P is area of P
- Because of symmetry of lattice plane, net flow of water across edge is 0
 WLOG assume boundary of *P* is impermeable
- Each interior point contributes volume 1 and each edge point contribute volume 1/2

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem O●	Multiplicative Scoring
Pick's	Theorem pr	oof contd.			

Proof.

• Vertex with angle θ contribute $\theta/2\pi$ volume

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem O●	Multiplicative Scoring

Pick's Theorem proof contd.

- Vertex with angle θ contribute $\theta/2\pi$ volume
- We know

$$\sum heta = (n-2)\pi \implies \sum heta/2\pi = 1/2 \cdot n - 1$$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem O●	Multiplicative Scoring

Pick's Theorem proof contd.

Proof.

- Vertex with angle θ contribute $\theta/2\pi$ volume
- We know

$$\sum \theta = (n-2)\pi \implies \sum \theta/2\pi = 1/2 \cdot n - 1$$

Edge points and vertex points make up boundary points

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem O●	Multiplicative Scoring

Pick's Theorem proof contd.

- Vertex with angle θ contribute $\theta/2\pi$ volume
- We know

$$\sum \theta = (n-2)\pi \implies \sum \theta/2\pi = 1/2 \cdot n - 1$$

- Edge points and vertex points make up boundary points
- Therefore,

area of
$$P = |\text{int } P| + 1/2 \cdot |\partial P| - 1$$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring ●O
Multir	olicative Sco	rina			
Gar	ne Rules				
0	Start with a nu	umber <i>n</i>			
2	Split <i>n</i> into <i>i</i> a	nd <i>n</i> – <i>i</i>			
3	Add $i(n-i)$ to	the score			
4	Repeat step 2	until you have all 1s	3		

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring		

Game Rules

- 1 Start with a number n
- 2 Split *n* into *i* and n i
- **3** Add i(n-i) to the score
- 4 Repeat step 2 until you have all 1s

Sample Game

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring
Multip	licative Scor	ring			

Game Rules

- Start with a number n
- 2 Split *n* into *i* and n i
- (a) Add i(n i) to the score
- 4 Repeat step 2 until you have all 1s

Sample Game

Score:

$2\times4+1\times1+1\times3+1\times2+1\times1=15$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring
Multip	plicative Sco	ring			

Question

What is the maximum score one can achieve?

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Question

What is the maximum score one can achieve?

Proof.

• Imagine we have a tower of *n* boxes

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Question

What is the maximum score one can achieve?

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta PE_i = i(n-i)$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Question

What is the maximum score one can achieve?

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta PE_i = i(n-i)$
- When we split, the δPE_i is our score for the split

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Question

What is the maximum score one can achieve?

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta PE_i = i(n-i)$
- When we split, the δPE_i is our score for the split
- Total score:

$$\sum \delta P E_i = \Delta P E$$

Agenda O	The General Idea O	Center of Mass Arguments	Pythagorean Theorem	Pick's Theorem	Multiplicative Scoring

Question

What is the maximum score one can achieve?

Proof.

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta PE_i = i(n-i)$
- When we split, the δPE_i is our score for the split
- Total score:

$$\sum \delta P E_i = \Delta P E$$

However

$$\Delta PE = (n-1) + ... + 2 + 1 = \left| \frac{n(n-1)}{2} \right|$$