Topological Combinatorics

Nandana Madhukara

Euler Circle

July 8, 2021

Nandana Madhukara

Topological Combinatorics

▲ E ▶ E のQC July 8, 2021 1/14

<ロト <問ト < 目と < 目と

Table of Contents

イロト イヨト イヨト イヨト

Basic Topology

Nandana Madhukara

▲ E ▶ E ∽ Q @ July 8, 2021 3/14

<ロト <問ト < 目と < 目と

Definitions

Topology is study of geometric objects under continuous deformations transformation that do not cut the object.

Definition

X is some set and τ is a set of subsets of X. (X, τ) is topological space if

- **1** The empty set and X are in τ
- **②** The union of any number elements of τ is in τ
- **③** The intersection of any number elements of τ is in τ

Additionally, for any topological space (X, τ) , τ is said to be a *topology* on X.

A D F A B F A B F A B

Theorems

Main theorem we will be using:

Theorem (Borsuk-Ulam)

If the function $f : S^n \to \mathbb{R}^n$ is continuous, there exists $x \in S^n$ such that f(x) = f(-x).

< □ > < 同 > < 回 > < 回 > < 回 >

The Necklace Problem

メロト メポト メヨト メヨト

The Problem

Proposition

Let there be 2d > 2 jewels on a string where each jewel is one of n types. It is always possible to use n or fewer cuts to cut and divide the substrings among two people where each person gets the same number of jewels of each type.

• □ ▶ • 4□ ▶ • Ξ ▶ •

Examples

Example

Example

Only required two cuts.

Nandana Madhukara

æ July 8, 2021 8/14

э

・ロト ・日 ・ ・ ヨ ・ ・

Proof

• Convert problem to continuous one: Jewels \rightarrow regions in [0,1]

$$S^n = \{x \in R^{n+1} \mid x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1\}.$$

Cutting with *n* cuts \rightarrow finding $x_1^2, x_2^2, \cdots, x_{n+1}^2$. Sign \rightarrow which person gets the piece.

- f: Sⁿ → ℝⁿ equals function that maps cutting division to ℝⁿ. Antipodal points mean switching who gets what piece.
- $f(x) = f(-x) \rightarrow$ switching doesn't matter \rightarrow fair division.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

The Inscribed Rectangle Problem

イロト イヨト イヨト イヨ

Fairly famous unsolved problem is the inscribed square problem:

<ロト < 四ト < 三ト < 三ト

Fairly famous unsolved problem is the inscribed square problem:

Question

Can we always inscribe a square in any loop?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fairly famous unsolved problem is the inscribed square problem:

Question

Can we always inscribe a square in any loop?

Weaker version of this problem that we can prove is the inscribed rectangle problem:

< □ > < 同 > < 回 > < 回 > < 回 >

Fairly famous unsolved problem is the inscribed square problem:

Question

Can we always inscribe a square in any loop?

Weaker version of this problem that we can prove is the inscribed rectangle problem:

Proposition

It is always possible to inscribe a rectangle in any loop.

(日)

Proof

 $\bullet~{\rm Rectangle} \to {\rm two}~{\rm line}~{\rm segments}$ of equal length that share midpoint

(日)

Proof (cont.)

- Put loop on xy-plane. Above midpoint of each line segment, z coord = length of line segment. Now we get surface.
- Loop → line segment. x and y axes = the line segment. Glue to get Möbius Strip.
- Map Möbius Strip onto surface. Edge lines up with loop and surface intersects itself.

< □ > < □ > < □ > < □ > < □ > < □ >

Thank you

Thank you for your attention!

< □ > < □ > < □ > < □ > < □ >