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3 1. Week 1

1 Week 1

(1) The Euclidean distance in R between elements x and y is |x−y|. Now we check if this expression

satisfies all the metric properties. The first property is an if and only if statement so we first prove the

forward direction: if d(x, y) = |x−y| = 0, then x = y. We see |x−y| = 0 =⇒ x−y = 0 =⇒ x = y.

For the other direction, if x = y, we have |x− y| = |x− x| = 0. Next, for the second property we

have

d(x, y) = |x− y| = | − (x− y)| = |y − x| = d(y, x).

For the last property, we introduce a new element z ∈ R. WLOG we assume x ≥ y ≥ z. Now the

triangle inequality states

|x− y| ≤ |x− z|+ |z − y|.

Using our assumption, we get

x− y ≤ x− z + y − z = x+ y − 2z.

Simplifying this further gives us y ≤ z which we know is true. Since all our steps are reversible we

are done proving the Triangle Inequality. Therefore we are done proving that standard Euclidean

distance in R is in fact a metric.

Now we follow similar steps for Euclidean distance in R2. We know the distance between points

(a, b) and (c, d) is
√
(a− c)2 + (b− d)2. For the first property, we can see that if the points are the

same, the distance is 0. For the reverse, we have√
(a− c)2 + (b− d)2 = 0 =⇒ (a− c)2 + (b− d)2 = 0 =⇒ (a, b) = (c, d).

Property 2 follows from the fact that squaring results is a positive. Finally, for the last property, if

the third point is (e, f), we have√
(a− c)2 + (b− d)2 ≤

√
(a− e)2 + (b− f)2 +

√
(e− c)2 + (f − d)2.

After going through the arithmetic and since all our steps are reversible, we can see that this is

true. Therefore, Euclidean distance in R2 is a metric.

(2)

(a) Property 1 holds by definition. Property 2 is also trivial. For the triangle inequality property

we first go with the case that x = y. This means that d(x, x) = 0 and d(x, z)+d(z, y) = 2d(x, z)

which is greater than or equal to 0. When x ≠ y, we have d(x, y) = 1. Now for the other side

of the inequality, we see that it must always be greater than 0 since x and y cannot equal z

at the same time.

(b) When x = y, we know that the max function is either 0 or 1 but d(x, y) = 1 so the property

is satisfied. When x ̸= y, we the max function is 1 while d(x, y) = 0. Therefore our metric is

an ultrametric.

(3) If dp(x, y) = 0 then by we know, by definition, that the only way this can happen is if

x − y = 0 =⇒ x = y. For the reverse, we have |x − y|p = |0|p = 0. Now we go on to the second

property. If we let x− y = mpn where m ̸= 0 and is relatively prime to p, we have

|y − x|p = | − (x− y)|p = | −mpn|p = p−n = |x− y|p.
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The reason | −mpn|p = p−n is because −m is still not 0 and not divisible by p.

The last property we have to prove is the Triangle Inequality. Let x = kpa and y = lpb where

rational k and l are not 0 and |k|p = |l|p = 1. WLOG assume that a ≤ b. We must prove that

|x+ y|p ≤ |x|p + |y|p.

The LHS is just |kpa + lpb|p = p−a|k+ lpb−a|p. If b ̸= a, since p does not divide (k+ lpb−a) we have

|x+ y|p = p−a|k + lpb−a|p = p−a ≤ p−a + p−b = |x|p + |y|p.

Now if a = b, the LHS is p−a|k + lpb−a|p = p−a|k + l|p. If k + l = pr, we have

|x+ y|p = p−a|k + l|p = p−a−r ≤ 2p−a = |x|p + |y|p.

Finally, if p ∤ (k + l), we have

|x+ y|p = p−a|k + l|p = p−a ≤ 2p−a = |x|p + |y|p.

(4)

(a) For ε > 0, let N be an integer such that N−1 < ε
2 and let n,m > N . We see that

d(an, am) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+ ∣∣∣∣− 1

m

∣∣∣∣ = 1

n
+

1

m
<

2

N
< ε.

(b) Again for ε > 0, let N be an integer such that N−1 < ε
2 and let n,m > N . We see that

d(bn, bm) =

∣∣∣∣sinnn − sinm

m

∣∣∣∣ ≤ ∣∣∣∣ 1n +
1

m

∣∣∣∣ ≤ 1

n
+

1

m
≤ 2

N
< ε

(c) Since 1/n and 1/n2 are both Cauchy sequences, this combination must also be one.

(d) As the sequence goes on, the terms are getting closer at at least a rate of 8× 10−n. Since we

already proved that (an) = 10−n is a Cauchy sequence, we are done.

(5) Let ε > 0 be some arbitrary number. Let N be an integer such that when n,m > N , we

have |xn − xm| < ε/2 and let M be an integer such that when n,m > M , we have |yn − ym| < ε/2.

Finally, let N ′ = max(N,M). Therefore when n,m > N ′ we have

|xn + yn − (xm + ym)| = |xn − xm + yn − ym| ≤ |xn − xm|+ |yn − ym| < ε

(6) We can go through similar steps like the previous problem to get

|xnyn − xmym| = |xn(yn − ym) + ym(xn − xm)| < |xn(yn − ym)|+ |ym(xn − xm)|.

Since (xn) and (ym) are Cauchy, they are bounded so we have

|xn(yn − ym)|+ |ym(xn − xm)| < |xn − xm|+ |yn − ym| < ε.

(7)

(a) For the sake of contradiction assume (an) is Cauchy. This means that for any ε > 0, there

exists a N such that |an − am| = |n − m| whenever n and m are integers greater than N .

However we can see that this is not true for ε = 0.5.

(b) For the sake of contradiction assume (bn) is Cauchy. This means that for any ε > 0, there

exists a N such that |bn − bm| = |
√
n−

√
m| whenever n and m are integers greater than N .

Let n = 4m. Notice that n,m are still greater than N . Now we have |
√
4m −

√
m| =

√
m

which can be greater than ε so we have a contradiction.

(c) The difference between terms can be 0 or ±2 so the sequence cannot be Cauchy.
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2 Week 2

(1) For (xn + yn), let ε > 0 be arbitrary. Let N be an integer where n > N =⇒ |xn| < ε/2 and

similarly, let M be an integer where n > M =⇒ |yn| < ε/2. Now let N ′ = max(N,M). Now for

n > N ′, we have

|xn + yn| < |xn|+ |yn| < ε.

For (xn ·yn), let N be an integer where n > N =⇒ |xn| <
√
ε and similarly, let M be an integer

where n > M =⇒ |yn| <
√
ε. Now let N ′ = max(N,M). When n > N ′, we have

|xn · yn| = |xn| · |yn| <
√
ε ·

√
ε = ε

(2)

1. Let ε > 0 be arbitrary. Since (xn) is Cauchy, we have |xn − xm| < ε/2 when n,m > N for

some integer N and since yn → 0, we have |yn| < ε/2 when n > M for some integer M . Let

N ′ = max(N,M). When n,m > N ′, we have

|xnyn| = |yn(xn − xm) + xmyn| < |xn − xm|+ |yn| < ε

2. Let ε > 0 be arbitrary. If xn → 0, for an integerN , we know that n > N =⇒ |xn| = ||xn|| < ε

which means that |xn| must converge to 0. If |xn| → 0, we know that when n > N , we have

||xn|| = |xn| < ε

which is the definition of xn → 0.

(3) Let ε > 0 be arbitrary. Since (xn) is Cauchy, for some integer N , we know that n,m >

N =⇒ |xn − xm| < ε. Now we note that kn > n. This means that n, kn > N so since (xn) is

Cauchy,

|xn − xkn | < ε.

(4) The set of all subsequences includes the subsequence that starts from the second term and

goes on and we know that this subsequence converges to x. Therefore adding one term to the

beginning to create (xn) will not change the convergence.

(7)

(a) We can see that this metric is symmetric since d1 and d2 are both symmetric. Now if x = y,

we know that d1(x, y) = 0 and d2(x, y) = 0 so d1 + d2 = 0. If d1 + d2 = 0 =⇒ d1 = 0, d2 = 0.

Since d1 = 0, d2 = 0 =⇒ x = y. Now for triangle inequality we can just add the triangle

inequalitys for d1 and d2.

(9)

(a) If x is positive, we have x < ε and if x is negative, we have x > −ε. For the reverse, if

−ε < x < ε, we know that x must be at most a distance of ε away from zero so |x| < ε.

(b) We know through triangle inequality that

|y|+ |x− y| ≥ |x|

and

|x|+ |y − x| ≥ |y|.
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Therefore

|x− y| ≥ |x| − |y|

and

|y − x| = |x− y| ≥ |y| − |x| = −(|x| − |y|).

We can see that these two inequalities imply that |x− y| ≥ ||x| − |y||.

(11) For the sake of contradiction, let x > y. Using this fact and also that xn < y for all n, we

see that |xn − x| > x− y. Therefore when some real number ε is in the range (0, x− y],

|xn − x| > ε

which contradicts (xn) converging to x.

3 Week 3

(1) The least upperbound in R is
√
2. Therefore the least upperbound in Q is the number greater

than
√
2 and as close as possible to it. However if we think some rational number r is the closest

to
√
2, we can always pick a rational r′ such that

√
2 < r < r so the sequence does not have a least

upperbound.

(2) For N,Z, they are not fields which breaks axiom 1. For C, this set does not follow the

ordering axiom since there is no well defined way of ordering complex numbers.

(4)

(a) Let (xn) be a representative of x. Since (xn) is Cauchy, it is bounded so there must be a

rationa number r such that xn ≥ r for all n. Therefore, all we need to do now is to pick a

positive integer m such that m > 1/r.

(b) Since x < y =⇒ 0 < y − x, there exists an integer n such that

0 <
1

n
< y − x

from part (a). Now, we also know that every integer n can be written as m/2 for even m so

1

n
< y − x =⇒ 2

m
< y − x =⇒ x+

1

m
< y − 1

m
.

(c) If x = 0, then x = [(0)] and |x| = |[(0)]| = [(|0|)] = [(0)]. This is the equivalence class that

convergs to 0. This means that its terms become arbitrarily close to 0. Therefore, by definition

of convergence, there will always be an integer. n such that n > N =⇒ xn < ε which means

that |x| < ε.

For the converse, we know that x is the equivalence class such that there exists an N such

that n > N =⇒ |xn| < ε. Therefore (|xn)|) → 0 so |x| = 0 =⇒ x = 0.

(5)

(a) For a set S, the greatest lower bound x is a number such that x ≤ s for all s ∈ S. and there

exists no x′ > x where x′ ≤ s.
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(b) We know that x < b for all x ∈ S so −x > −b, through basic properties of inequalities. So −b

is the greatest lower bound.

(8) We must find a sequence that becomes arbitrarily big and becomes arbitrarily small. The

following recursively defined sequence does this:

an =

{
−an−1 + 1 n ≡ 1 (mod 2)

−an−1 n ≡ 0 (mod 2)

where a0 = 0. We can notice that this sequence will have no lower or upper bound.

(9) We know that the lim inf = −1 and the lim sup = 1. Since these values are not equal, this

sequence does not converge.

4 Week 4

(1)

(a) We claim that limx→∞ 1/x = 0. For an arbitrary ε, if we let M > 1/ε, we know that for all

m > M , ∣∣∣∣ 1m − 0

∣∣∣∣ < 1

M
< ε

so the limit is 0. However the function f(x) = x does not exists when x → ∞ since this

function gets arbitrarily big as x goes to infinity.

(3)

(a) Fix arbitrary y, let ε > 0 and let δ = 1000000000000066600000000000001 (prime by the way).

Whenever |f(y)− f(x)| = |c− c| = 0 < ε

(b) Fix arbitrary y, let ε > 0 and let δ = ε. Whenever |y − x| < δ,

|f(y)− f(x)| = |y − x| < δ = ε

(c) We do induction on the degree of n. The base case is when n = 0 which is just the constant

polynomial. From part (a), we know that this is continuous. For the inductive step, we assume

that a k degree polynomial is continuous. Let this polynomial be Pk(x). We must now prove

that a k + 1 polynomial is continuous. Let this polynomial be Pk+1(x). We know that

Pk+1(x) = ak+1x
k+1 + Pk(x).

Now for any x0, using limit properties, we have

lim
x→x0

Pk+1(x) = lim
x→x0

ak+1x
k+1 + Pk(x)

= ak+1 lim
x→x0

xk+1 + lim
x→x0

Pk(x)

= ak+1x
k+1
0 + Pk(x0) = Pk+1(x0)

Therefore Pk+1(x) is continuous. (The second to last step follows from the fact that Pk(x0)

and xk+1 is continuous).
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(4) For the sake of contradiction, let us assume that this function is continuous and x = 0. For

all ε > 0, there exists a δ > 0 such that |x| < δ,

|f(x)− f(0)| =
∣∣∣∣1x − r

∣∣∣∣ < ε.

Since 1/x increase as |x| gets smaller, for any rational r, we can always pick ε such that we will

never be able to pick a δ.

(5) For all ε1 > 0, there is a δ1 > 0 such that |x− x0| < δ1 =⇒ |f(x)− L| < ε1 for all real x.

Similarly, for ε2 > 0, there is a δ2 such that |x− x0| < δ2 =⇒ |g(x)−D| < ε2 for all real x.

1. cf(x) → cLmeans that for all ε > 0, there exists δ > 0 such that for all x, whenever |x−x0| < δ

|cf(x)− cL| = |c||f(x)− L| < ε =⇒ |f(x)− L| < ε/|c|.

Now we pick δ such that it is equal to δ1 when ε1 = ε/|c|.

2. For this case, we have

|f(x) + g(x)− L−D| < |f(x)− L|+ |g(x)−D|.

Now we choose δ = max(δ1, δ2) so whenever |x− x0| < δ,

|f(x)− L|+ |g(x)−D| < ε1 + ε2.

Notice that ε1 and ε2 can be any positive real so we can always make ε1 + ε2 ≤ ε so we are

done.

(10) Let limx→0 sin(1/x) = L. Therefore for all ε > 0, there exists δ > 0 such that whenever

|x− 0| = |x| < δ,

| sin(1/x)− L| < | sin(1/x)|+ |L| < 1 + |L| < ε

which is not true for any ε ≥ 1.

(11)

(a) This inequality is clearly true when n = 0. Suppose it is true when n = k. We have

(1 + x)k ≥ 1 + kx. Multiplying both sides my 1 + x gives us

(1 + x)k+1 ≥ (1 + kx)(1 + x) = (1 + kx) + (1 + kx)x ≥ 1 + (k + 1)x.

Therefore by induction, we are done.

(b) We know that

ex =
∞∑
j=0

xj

j!
=⇒ e =

∞∑
j=0

1

j!

so (yn) is bounded above.

(c) We know that

xn =

(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)
1

nk
≤

n∑
k=0

1

k!
= yn.

Since xn < yn and (yn) is bounded, we are done.
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5 Week 5

(1) Let x ∈ (a, b). Choose ε < min(d(x, a), d(x, b)). We know ε > 0 since a and b is not in (a, b) so

d(x, a), d(x, b) > 0. We can see that d(x, y) < ε implies that y ∈ (a, b) so (a, b) must be open

For [a, b], we choose the same ε and see that R\[a, b] is open. Therefore [a, b] must be closed.

(2) The set

∩n
k=1(−1/k, 1/k)

is the {0} which is closed.

(3) Let S be a finite set and x ∈ X\S. Choose

ε < min(d(x, y1), ..., d(x, yn))

where each yi ∈ S. We know that ε can be positive since each yi is not in X\S. Choosing this ε

makes it such that d(x, z) < ε =⇒ z ∈ X\S so S must be closed.

Assume some x ∈ S is a limit point. This would mean that every open neighborhood of x

contains elements of S. Since S is a finite set, we can always make the open ball centred at x small

enough such that it does not contain an element of S which is a contradiction.

(4) Consider the following sequence: We start with a point inside an open ball around x. For

each term in the sequence we take a point in an open ball smaller than the open ball for the

previous term. We can always do this since x is a limit point. Therefore the terms get closer

and closer to x which means that they converge to x. Specifically, there is an integer N such that

n > N =⇒ |xn − x| < ε for any ε.

(5) Assume S is not ∅ or R but clopen. Since it is open, it must be in the form (a, b) but this

is not closed since R\(a, b) is not open. Therefore we have a contradiction.

(6) Let S = {1/n : n ∈ N} ∪ 0 and consider an open cover C of S. Now let S′ be the set of

all elements of S that are in at least 2 elements of C. We know that S′ is a finite set since S is a

discrete countably infinite set. Therefore we can replace these intersections with one set and we

will have a finite subcover.

6 Week 6

(1)

(a) The function f : R → R satisfying {
−1 x < 0

1 x ≥ 0

works since for any S ⊆ R, we know that f(S) is either {1,−1}, {1}, or {−1} which are compact

sets.

(2) Let ε > 0 be arbitrary and choose δ = ε. When x, y ∈ [−1, 1], we have x2 < |x| and y2 < |y|
so when |x− y| < δ,

|x2 − y2| < |x− y| < δ = ε

so we are done. However when f : R → R, we cannot make this argument and δ has to depend of x.

(3)
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(a) Let ε > 0 be arbitrary and choose δ = ε. When x, y ∈ [a,∞), we have whenever |x− y| < δ,∣∣∣∣1x − 1

y

∣∣∣∣ = |y − x|
|xy|

< |y − x| = |x− y| < δ = ε

and since δ doesn’t depend on x, we are done.

(b) We can see that ⋃
a>0

[a,∞) = (0,∞).

Since f is uniformly continuous for all x ∈ [a,∞), we see that f must be uniformly continuous

on (0,∞).

(5) Since f is Lipshitz we know there exists a K > 0 such that

ρ(f(x), f(y)) ≤ Kd(x, y)

for all x, y ∈ X. Let ε > 0 be arbitrary and δ < ε/K. Now whenever d(x, y) < δ,

ρ(f(x), f(y)) ≤ Kd(x, y) < ε

so f is uniformly continuous.

(6) The image of f must have at least f(a) and f(b). Assume these are the only two elements

so f(a) ̸= f(b) since f is non-constant. Since f is continuous, for all ε > 0 and x, y ∈ [a, b], there

exists a positive δ such that whenever |x− y| < δ,

|f(x)− f(y)| < ε.

However, f(x) and f(y) are either f(a) or f(b). Say we pick x and y such that f(x) = f(a) and

f(y) = f(b). Then |f(x) − f(y)| will be a nonzero constant since f(a) ̸= f(b). Therefore we will

always be able to pick a ε such that

ε > |f(x)− f(y)|

so we have a contradiction.

(8)

(a) We know that sinx
x is continuous for all x ≠ 0. Since limx→0

sinx
x = 1 so it doesn’t follow the

intermediate value property.

(b) A counter example is f(x) = 1/x2. All restrictions of f |[a, b] follow the intermediate value

property but f(x) is discontinuous at x = 0.

7 Week 7

(1) Since f ′ is bounded, we have |f ′(x)| < N for any x and some N . This implies that∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ < N

since

f ′(x) = lim
x→x0

f(x)− f(x0)

x− x0
.
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Let ε > 0 and choose δ = ε/N . Whenever |x− x0| < δ,

|f(x)− f(x0)| = |x− x0| ·
∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ < δ ·N = ε.

(2) Let f, g : (a, b) → R be differentiable functions, and k ∈ R a constant.

1.

d

dx
(kf) = lim

h→0

kf(x+ h)− kf(x)

h

= k lim
h→0

f(x+ h)− f(x)

h

= k
df

dx

2.

d

dx
(f + g) = lim

h→0

(f + g)(x+ h)− (f + g)(x)

h

= lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h

=
df

dx
+

dg

dx

(3) Let f(x) = x2 sin(x). By the product rule, we have

df

dx
=

d

dx
(x2) sin(x) + x2

d

dx
(sin(x)) = 2x sin(x) + x2 cos(x).

(4) We have

d

dx
(sin(x2)) = lim

h→0

sin(x2 + 2xh+ h2)− sin(x2)

h

= lim
h→0

sin(x2) cos(2xh+ h2) + cos(x2) sin(2xh+ h2)− sin(x2)

h

= sin(x2) lim
h→0

cos(2xh+ h2)− 1

h
+ cos(x2) lim

h→0

sin(2xh+ h2)

h

= sin(x2) lim
h→0

cos(2xh+ h2)− 1

2xh+ h2
(2x+ h) + cos(x2) lim

h→0

sin(2xh+ h2)

h
(2x+ h)

= 2x cos(x2)

(5) We have
df

dx
= lim

h→0

√
x+ h−

√
x

h
= lim

h→0

1√
x+ h+

√
x
=

1

2
√
x
.
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8 Week 8

(1) Let

h(x) = f(x)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)).

We see that h(a) = h(b) = f(a) so we can use Rolle’s Theorem: there must exist a c such that

0 = h′(c) = f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c).

Rearranging this gives us

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c)

giving us our desired result.

(3) Let the extension be g : [a, b] → R. Consider a Cauchy sequence (xn) that converges a.

Because (xn) is Cauchy, we know that (f(xn)) converges to some real number. We define g(a) as

this real number. We can do the same thing for b to get g(b). (I think there was an exercises we

prove that we can find the limit at a point if we look at a sequence that converges to that point

rather than looking at every x. We can use this to prove that g is continuous).

(5) We have that P5 for sin(x) is

sin(c) + cos(c)(x− c)− sin(c)

2!
(x− c)2 − cos(c)

3!
(x− c)3 +

sin(c)

4!
(x− c)4 +

cos(c)

5!
(x− c)5

(6) We have that P5 for cos(x) is

− cos(c)− sin(c)(x− c)− cos(c)

2!
(x− c)2 +

sin(c)

3!
(x− c)3 +

cos(c)

4!
(x− c)4 − sin(c)

5!
(x− c)5

(7) By definition, we have

Pk(x) =

k∑
j=1

P (j)(c)

j!
(x− c)j

and

Rk(x) = P (x)−
k∑

j=1

P (j)(c)

j!
(x− c)j .

Now we must calculate the following limit from x → c of

P (x)

(x− c)k
−

k∑
j=1

P (j)(c)

j!
(x− c)j−k =

1

(x− c)k

n∑
i=0

aix
i +

k∑
j=0

(x− c)j−k
n∑

i=0

ai
i!

j!(i− j)!
xi−j

=
1

(x− c)k

n∑
i=0

aix
i +

k∑
j=0

(x− c)j−k
n∑

i=0

ai

(
i

j

)
xi−j

which we can see is 0.
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(1) If |x| < 1, we have
∞∑
k=1

xk =
x

1− x

so the series converges. Now let us prove the converse. Suppose the series converges onto N but

|x| ≥ 1. The convergence says

lim
n→∞

n∑
k=1

xk = lim
n→∞

x− xn+1

1− x
= N.

However, this is a contradiction when |x| ≥ 1 since xn+1 → ∞ as n → ∞ so the limit doesn’t exist.

Therefore when the series converges, we know that |x| < 1.

(2) Let

ak =
1

k logα2 (k)
.

Therefore
∞∑
k=1

2ka2k =

∞∑
k=1

1

kα

which converges by the p-series test since α > 1 =⇒ α+1 > 1. Therefore by Cauchy’s Condensation

Test, we have that our original series converges.

(3) We know that

n1/ ln(n) = eln(n)
1/ ln(n)

= e

so the limit is just e.
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