◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Modular Exponentiation

Nandana Madhukara

San Diego Math Circle

May 28, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Modular Arithmetic

Euler's Totient Function

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review Questions

Question

How many integers between 1000 and 3000 inclusive are congruent to 5 (mod 7)?

Question

Find the smallest natural number n such that

$$617n = 943n \pmod{18}$$
.

Question

Find

Euler's Totient Function

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Review Questions Solutions

- First number is 1006 and last number is 2994.
- Numbers are spaced 7 apart so answer is 285 .

Euler's Totient Function

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review Questions Solutions

Solution 1

- First number is 1006 and last number is 2994.
- Numbers are spaced 7 apart so answer is 285.

- $617 \equiv 5 \pmod{18}$ and $943 \equiv 7 \pmod{18}$
- Therefore, we have $5n \equiv 7n \pmod{18}$ so smallest *n* is 9.

Review Questions Solutions

Solution 1

- First number is 1006 and last number is 2994.
- Numbers are spaced 7 apart so answer is 285.

Solution 2

- $617 \equiv 5 \pmod{18}$ and $943 \equiv 7 \pmod{18}$
- Therefore, we have $5n \equiv 7n \pmod{18}$ so smallest *n* is 9.

- $17 \equiv 1 \pmod{8}$, $177 \equiv 1 \pmod{8}$, $1777 \equiv 1 \pmod{8}$, ...
- Therefore the sum is $20 \equiv 4$ modulo 8.

Euler's Totient Function

More Challenging Questions

Question

The Fibonacci sequence is defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1} + F_n$. Find the remainder when F_{2006} is divided by 5.

Question

Find all prime numbers p for which $p^2 - 1$ is not a multiple of 24.

Question

Find the remainder when 3^{31} is divided by 7.

Euler's Totient Function

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Challenge Questions Solutions

Solution 1

• Fibonacci sequence modulo 5:

 $1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, \dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Challenge Questions Solutions

Solution 1

• Fibonacci sequence modulo 5:

 $1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, \dots$

• Repeats every 20 and $2006 \equiv 6 \pmod{20}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Challenge Questions Solutions

Solution 1

• Fibonacci sequence modulo 5:

 $1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, \ldots$

- Repeats every 20 and 2006 \equiv 6 (mod 20).
- Therefore, we have $F_{2006} \equiv 3 \pmod{5}$.

Challenge Questions Solutions

Solution 1

• Fibonacci sequence modulo 5:

 $1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, \ldots$

- Repeats every 20 and 2006 \equiv 6 (mod 20).
- Therefore, we have $F_{2006} \equiv 3 \pmod{5}$.

Solution 2

• Notice that p = 2 and p = 3 both work since $2^2 - 1 = 3$ and $3^2 - 1 = 8$ are not multiples of 24.

Challenge Questions Solutions

Solution 1

• Fibonacci sequence modulo 5:

 $1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, \ldots$

- Repeats every 20 and 2006 \equiv 6 (mod 20).
- Therefore, we have $F_{2006} \equiv 3 \pmod{5}$.

- Notice that p = 2 and p = 3 both work since $2^2 1 = 3$ and $3^2 1 = 8$ are not multiples of 24.
- Every primes greater than 3 is next to a multiple of 6 so $p^2 1 \equiv 0 \pmod{6}$.

Euler's Totient Function

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Challenge Questions Solutions (contd.)

Solution 2 (contd.)

• All primes greater than 2 are odd so p = 2k + 1.

Challenge Questions Solutions (contd.)

Solution 2 (contd.)

- All primes greater than 2 are odd so p = 2k + 1.
- We have

$$p^2 - 1 = (2k + 1)^2 - 1 = 4k(k + 1) \equiv 0 \pmod{4}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Challenge Questions Solutions (contd.)

Solution 2 (contd.)

- All primes greater than 2 are odd so p = 2k + 1.
- We have

$$p^2 - 1 = (2k + 1)^2 - 1 = 4k(k + 1) \equiv 0 \pmod{4}.$$

• Therefore $p^2 - 1 \equiv 0 \pmod{24}$ if $p \neq 2, 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Challenge Questions Solutions (contd.)

Solution 2 (contd.)

- All primes greater than 2 are odd so p = 2k + 1.
- We have

$$p^2 - 1 = (2k + 1)^2 - 1 = 4k(k + 1) \equiv 0 \pmod{4}.$$

• Therefore $p^2 - 1 \equiv 0 \pmod{24}$ if $p \neq 2, 3$.

- $3^3 = 27 \equiv -1 \pmod{7}$
- Therefore, we have $3^{31} \equiv 3 \cdot (3^3)^{10} \equiv 3 \pmod{7}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Fermat's Little Theorem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Theorem

Theorem (Fermat's Little Theorem)

If a is an integer, p is a prime number, and a is not divisible by $p, \ then$

$$a^{p-1}\equiv 1\pmod{p}$$

The Theorem

Theorem (Fermat's Little Theorem)

If a is an integer, p is a prime number, and a is not divisible by $p, \ then$

 $a^{p-1} \equiv 1 \pmod{p}$

Problem Find • $3^{31} \pmod{7}$ • $2^{35} \pmod{7}$ • $128^{129} \pmod{17}$ • $2^{1000} \pmod{13}$ • $29^{25} \pmod{11}$

Euler's Totient Function

The Proof

Proof.

• We fix a p and do induction on a

Euler's Totient Function

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Proof

Proof.

- We fix a p and do induction on a
- Base Case: $1^p \equiv 1 \pmod{p}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Proof

Proof.

- We fix a p and do induction on a
- Base Case: $1^p \equiv 1 \pmod{p}$
- Inductive Step: Assume a^p ≡ a (mod p) and we have to prove (a + 1)^p ≡ a + 1 (mod p)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Proof

Proof.

- We fix a p and do induction on a
- Base Case: $1^p \equiv 1 \pmod{p}$
- Inductive Step: Assume a^p ≡ a (mod p) and we have to prove (a + 1)^p ≡ a + 1 (mod p)
- Binomial Theorem:

$$(a+1)^{p} = a^{p} + {p \choose 1}a^{p-1} + {p \choose 2}a^{p-2} + \cdots {p \choose p-1}a + 1$$

The Proof

Proof.

- We fix a p and do induction on a
- Base Case: $1^p \equiv 1 \pmod{p}$
- Inductive Step: Assume a^p ≡ a (mod p) and we have to prove (a + 1)^p ≡ a + 1 (mod p)
- Binomial Theorem:

$$(a+1)^{p} = a^{p} + {p \choose 1}a^{p-1} + {p \choose 2}a^{p-2} + \cdots {p \choose p-1}a + 1$$

• Taking modulo p gives us $(a+1)^p \equiv a^p + 1 \equiv a+1 \pmod{p}$.

Euler's Totient Function

Challenging Problems

Problem

Solve the congruence

$$x^{103} \equiv 4 \pmod{11}.$$

Problem

Find all integers x such that $x^{86} \equiv 6 \pmod{29}$.

Problem

Let

$$a_1 = 4, a_n = 4^{a_{n-1}}, n > 1$$

Find a₁₀₀ (mod 7).

Fermat's Little Theorem 0000●

Euler's Totient Function

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Very Challenging Problems

Problem

If a googolplex is $10^{10^{100}}$, what day of the week will it be a googolplex days from today?

Problem

Find all positive integers x such that $2^{2^{x}+1}+2$ is divisible by 17.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Euler's Totient Function

Euler's Totient Function

Euler's Totient Function

Definition (Euler's totient function)

Euler's totient function $\phi(n)$ is the number of integers in $\{1, 2, ..., n\}$ that have no common divisors with n.

Problem

Find $\phi(17)$, $\phi(81)$, and $\phi(100)$.

Euler's Totient Function

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Euler's Totient Function

Definition (Euler's totient function)

Euler's totient function $\phi(n)$ is the number of integers in $\{1, 2, ..., n\}$ that have no common divisors with n.

Problem

Find $\phi(17)$, $\phi(81)$, and $\phi(100)$.

Proposition

•
$$\phi(p) = p - 1$$

•
$$\phi(p^n) = p^n - p^{n-1}$$

• $\phi(nm) = \phi(n)\phi(m)$ when gcd n, m = 1

Euler's Totient Function

Euler's Theorem

Proposition

If the prime factorization of n is $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}$, then

$$\phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$$
$$= n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right).$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Euler's Totient Function

Euler's Theorem

Proposition

If the prime factorization of n is $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}$, then

$$\phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$$
$$= n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right)$$

Theorem (Euler's Theorem)

If a and n have no common divisors, then

 $a^{\phi(n)} \equiv 1 \pmod{n}.$

Euler's Totient Function

Challenge Problems

Problem

What is the last digit of 7²⁰¹³?

Problem

Find the last two digits of 2^{2013} .

Problem

Find the last two digits of $7^{81} - 3^{81}$.

Problem

Find the last two digits of $3^{3^{3^{\circ}}}$ where there are 2024 3's.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Euler's Totient Function $0000 \bullet$

The End

Fin.

