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Review Questions

Question

How many integers between 1000 and 3000 inclusive are congruent
to 5 (mod 7)?

Question

Find the smallest natural number n such that

617n = 943n (mod 18).

Question

Find

17 + 177 + · · ·+ 177777777777777777777 (mod 8).
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Review Questions Solutions

Solution 1

First number is 1006 and last number is 2994.

Numbers are spaced 7 apart so answer is 285 .

Solution 2

617 ≡ 5 (mod 18) and 943 ≡ 7 (mod 18)

Therefore, we have 5n ≡ 7n (mod 18) so smallest n is 9 .

Solution 3

17 ≡ 1 (mod 8), 177 ≡ 1 (mod 8), 1777 ≡ 1 (mod 8), ...

Therefore the sum is 20 ≡ 4 modulo 8.
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More Challenging Questions

Question

The Fibonacci sequence is defined by F1 = F2 = 1 and
Fn+2 = Fn+1 + Fn. Find the remainder when F2006 is divided by 5.

Question

Find all prime numbers p for which p2 − 1 is not a multiple of 24.

Question

Find the remainder when 331 is divided by 7.
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Challenge Questions Solutions

Solution 1

Fibonacci sequence modulo 5:

1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, ...

Repeats every 20 and 2006 ≡ 6 (mod 20).

Therefore, we have F2006 ≡ 3 (mod 5).

Solution 2

Notice that p = 2 and p = 3 both work since 22 − 1 = 3 and
32 − 1 = 8 are not multiples of 24.

Every primes greater than 3 is next to a multiple of 6 so
p2 − 1 ≡ 0 (mod 6).
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Challenge Questions Solutions (contd.)

Solution 2 (contd.)

All primes greater than 2 are odd so p = 2k + 1.

We have

p2 − 1 = (2k + 1)2 − 1 = 4k(k + 1) ≡ 0 (mod 4).

Therefore p2 − 1 ≡ 0 (mod 24) if p ̸= 2, 3.

Solution 3

33 = 27 ≡ −1 (mod 7)

Therefore, we have 331 ≡ 3 · (33)10 ≡ 3 (mod 7).
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Fermat’s Little Theorem
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The Theorem

Theorem (Fermat’s Little Theorem)

If a is an integer, p is a prime number, and a is not divisible by p,
then

ap−1 ≡ 1 (mod p)

Problem

Find

331 (mod 7)

235 (mod 7)

128129 (mod 17)

21000 (mod 13)

2925 (mod 11)
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The Proof

Proof.

We fix a p and do induction on a

Base Case: 1p ≡ 1 (mod p)

Inductive Step: Assume ap ≡ a (mod p) and we have to
prove (a+ 1)p ≡ a+ 1 (mod p)

Binomial Theorem:

(a+ 1)p = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + · · ·

(
p

p − 1

)
a+ 1

Taking modulo p gives us (a+1)p ≡ ap +1 ≡ a+1 (mod p).

■
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Challenging Problems

Problem

Solve the congruence

x103 ≡ 4 (mod 11).

Problem

Find all integers x such that x86 ≡ 6 (mod 29).

Problem

Let
a1 = 4, an = 4an−1 , n > 1

Find a100 (mod 7).
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Very Challenging Problems

Problem

If a googolplex is 1010
100
, what day of the week will it be a

googolplex days from today?

Problem

Find all positive integers x such that 22
x+1 + 2 is divisible by 17.
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Euler’s Totient Function
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Euler’s Totient Function

Definition (Euler’s totient function)

Euler’s totient function ϕ(n) is the number of integers in
{1, 2, ..., n} that have no common divisors with n.

Problem

Find ϕ(17), ϕ(81), and ϕ(100).

Proposition

ϕ(p) = p − 1

ϕ(pn) = pn − pn−1

ϕ(nm) = ϕ(n)ϕ(m) when gcd n,m = 1
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Euler’s Theorem

Proposition

If the prime factorization of n is n = pa11 · pa22 · · · pakk , then

ϕ(n) = n
k∏

i=1

(
1− 1

pi

)
= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pk

)
.

Theorem (Euler’s Theorem)

If a and n have no common divisors, then

aϕ(n) ≡ 1 (mod n).
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Challenge Problems

Problem

What is the last digit of 72013?

Problem

Find the last two digits of 22013.

Problem

Find the last two digits of 781 − 381.

Problem

Find the last two digits of 33
3···

where there are 2024 3’s.
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The End

Fin.
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