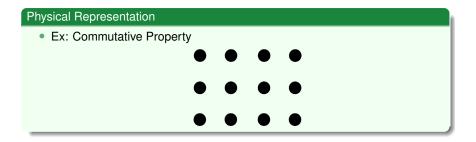
Agenda	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM

Mathematics from Physics

Nandana Madhukara


sciencekid6002@gmail.com

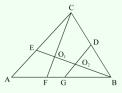
Agenda	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Agend	а				

- The General Idea
- OCM Arguments
- Operation of the ope
- Multiplicative Scoring
- 6 AM-GM

Agenda O	The General Idea ●	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
The G	eneral Idea				

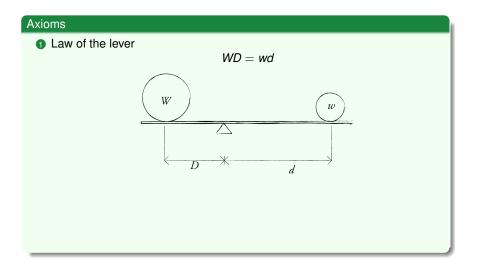
Agenda O	The General Idea ●	CM Arguments	Pythagorean Theorem OO	Multiplicative Scoring	AM-GM 000
The G	eneral Idea				

Agenda	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM
	•				

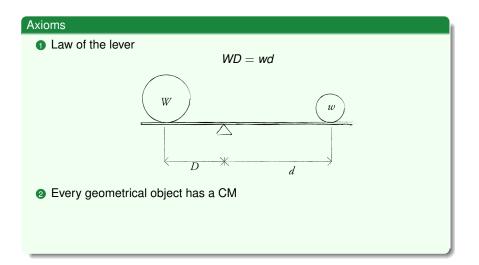

The General Idea

Physical Representation

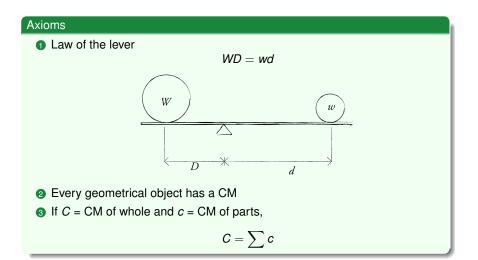
• Ex: Commutative Property


Using Physics

Ex: Mass Points



Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

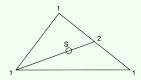

Agenda O	The General Idea O	CM Arguments ●000	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Agenda O	The General Idea O	CM Arguments ●000	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Agenda O	The General Idea O	CM Arguments ●000	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem OO	Multiplicative Scoring	AM-GM 000
Mediar	าร				

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Media	ns				

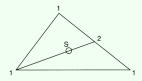

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

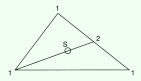


Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

Proof.

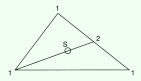


Set all verticies to have mass of 1

Agenda O	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

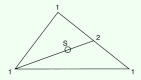


- Set all verticies to have mass of 1
- CM of one side (midpoint) will have mass of 2

Agenda O	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Theorem

The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1

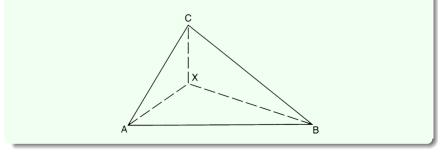


- Set all verticies to have mass of 1
- CM of one side (midpoint) will have mass of 2
- CM of triangle (centroid) is on median

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
, in the second	Ŭ.				

Theorem

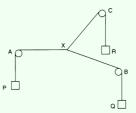
The centroid of a triangle splits a median into two segments with the ratio of its lengths being 2:1


- Set all verticies to have mass of 1
- CM of one side (midpoint) will have mass of 2
- CM of triangle (centroid) is on median
- Centroid splits median into ration 2:1

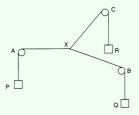
Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Ferma	t Point				

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM
Fermat	: Point				

Question

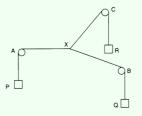

For $\triangle ABC$, what is the point X such that XA + XB + XC is minimized?

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM
Fermat	Point (cont.)				


Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem 00	Multiplicative Scoring	AM-GM 000
Ferma	t Point (cont.)				

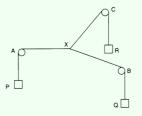
• Consider the following pulley system with equal masses:

Agenda O	The General Idea O	CM Arguments 000●	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Ferma	t Point (cont.)				


• Consider the following pulley system with equal masses:

• X will move wherever the weights are balanced

Agenda O	The General Idea O	CM Arguments 000●	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Ferma	t Point (cont.)				


Consider the following pulley system with equal masses:

- X will move wherever the weights are balanced
- Happens when masses are as low as possible \implies AP + BQ + CR is maximized

Agenda O	The General Idea O	CM Arguments 000●	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Ferma	t Point (cont.)				

Consider the following pulley system with equal masses:

- X will move wherever the weights are balanced
- Happens when masses are as low as possible \implies AP + BQ + CR is maximized
- Therefore XA + XB + XC is minimized so X goes to the Fermat Point.

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem ●O	Multiplicative Scoring	AM-GM 000

Pythagorean Theorem

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem ●O	Multiplicative Scoring	AM-GM 000
Pythag	gorean Theore	m			

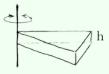
Theorem

For a right triangle PQR, the sides satisfy

 $PQ^2 + QR^2 = PR^2.$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem ●O	Multiplicative Scoring	AM-GM 000

Pythagorean Theorem

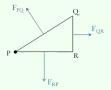

Theorem

For a right triangle PQR, the sides satisfy

$$PQ^2 + QR^2 = PR^2.$$

Proof.

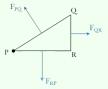
· Consider the following setup with air inside



Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem ○●	Multiplicative Scoring	AM-GM 000

Agenda	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM
			00		

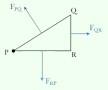
Proof (Cont.)


• The pressure will cause the following forces (aerial view)

Agenda	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM
			00		

Proof (Cont.)

• The pressure will cause the following forces (aerial view)


Torques must cancel out:

$$F_{PQ} imes PQ/2 = F_{RP} imes PR/2 + F_{QR} imes QR/2$$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem O●	Multiplicative Scoring	AM-GM 000

Proof (Cont.)

• The pressure will cause the following forces (aerial view)

Torques must cancel out:

$$F_{PQ} imes PQ/2 = F_{RP} imes PR/2 + F_{QR} imes QR/2$$

If pressure is p,

$$ph(PQ^2)/2 = ph(PR^2)/2 + ph(QR^2/2)$$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring ●O	AM-GM 000

Multiplicative Scoring

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Multipl	icative Scoring)			

Game Rules

- 1 Start with a number n
- ② Split *n* into *i* and n i
- **③** Add i(n-i) to the score
- 4 Repeat step 2 until you have all 1s

Agenda	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM
0	0	0000	00	•0	000

Multiplicative Scoring

Game Rules

- 1 Start with a number n
- 2 Split *n* into *i* and n i
- **3** Add i(n-i) to the score
- 4 Repeat step 2 until you have all 1s

Sample Game

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring ●O	AM-GM 000
					ĺ

Multiplicative Scoring

Game Rules

- Start with a number n
- 2 Split *n* into *i* and n i
- **3** Add i(n-i) to the score
- 4 Repeat step 2 until you have all 1s

Sample Game

Score:

$2\times4+1\times1+1\times3+1\times2+1\times1=15$

Nandana Madhukara

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring O●	AM-GM 000
Multipli	icative Scoring)			

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring ○●	AM-GM 000
Multipl	icative Scoring	J			

Question

What is the maximum score one can achieve?

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring ○●	AM-GM 000
Multipl	icative Scoring	3			

Question

What is the maximum score one can achieve?

Proof.

Imagine we have a tower of n boxes

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring O●	AM-GM 000

Question

What is the maximum score one can achieve?

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta P_i =$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring O●	AM-GM 000

Question

What is the maximum score one can achieve?

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta P_i = i(n-i)$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000
Multip	licative Scoring)			

Question

What is the maximum score one can achieve?

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta P_i = i(n-i)$
- When we split, the δPE_i is our score for the split

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM 000

Question

What is the maximum score one can achieve?

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta P_i = i(n-i)$
- When we split, the δPE_i is our score for the split
- Total score:

$$\sum \delta P E_i = \Delta P E$$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring O●	AM-GM 000

Question

What is the maximum score one can achieve?

Proof.

- Imagine we have a tower of n boxes
- If *i* boxes are brought down, we see that $\delta P_i = i(n-i)$
- When we split, the δPE_i is our score for the split
- Total score:

$$\sum \delta P E_i = \Delta P E$$

However

$$\Delta PE = (n-1) + ... + 2 + 1 = \left| \frac{n(n-1)}{2} \right|$$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem OO	Multiplicative Scoring	AM-GM ●OO
AM-GI	М				

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ●OO
AM-GN	Λ				

For weights $p_i \in [0, 1]$ such that $\sum p_i = 1$ and numbers a_i ,

 $\sum p_i a_i \geq \prod a_i^{p_i}.$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ●OO
AM-GI	M				

For weights $p_i \in [0, 1]$ such that $\sum p_i = 1$ and numbers a_i ,

 $\sum p_i a_i \geq \prod a_i^{p_i}.$

Proof.

• Suppose we have masses $m_1, m_2, ..., m_n$ with specific heat *c*.

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ●OO
AM-GI	M				

For weights $p_i \in [0, 1]$ such that $\sum p_i = 1$ and numbers a_i ,

 $\sum p_i a_i \geq \prod a_i^{p_i}.$

- Suppose we have masses m₁, m₂, ..., m_n with specific heat c.
- Let the weights be $p_i = m_i/M$ where $M = \sum m_i$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ●OO
AM-GI	М				

For weights $p_i \in [0, 1]$ such that $\sum p_i = 1$ and numbers a_i ,

 $\sum p_i a_i \geq \prod a_i^{p_i}.$

- Suppose we have masses m₁, m₂, ..., m_n with specific heat c.
- Let the weights be $p_i = m_i/M$ where $M = \sum m_i$
- Let initial temperature of *i*th mass be *T_i*

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ●OO
AM-GI	М				

For weights $p_i \in [0, 1]$ such that $\sum p_i = 1$ and numbers a_i ,

 $\sum p_i a_i \geq \prod a_i^{p_i}.$

- Suppose we have masses m₁, m₂, ..., m_n with specific heat c.
- Let the weights be $p_i = m_i/M$ where $M = \sum m_i$
- Let initial temperature of *i*th mass be T_i
- If placed in thermal contact, final temperature will be

$$\overline{T} = \sum p_i T_i$$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ⊙●○
AM-GN	M (cont.)				

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM O●O
AM-GI	M (cont.)				

 Over small interval of time, let temperature of *i*th mass change by dT'_i when it is at temperature T'_i

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM O●O
AM-GI	M (cont.)				

- Over small interval of time, let temperature of *i*th mass change by dT_i' when it is at temperature T_i'
- · Heat received:

 $dQ_i = cp_i M dT'_i$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM O●O
AM-GI	M (cont.)				

- Over small interval of time, let temperature of *i*th mass change by dT_i' when it is at temperature T_i'
- Heat received:

$$dQ_i = cp_i M dT'_i$$

Entropy Change:

$$dS_i = rac{dQ_i}{T'_i} = rac{cp_i M dT'_i}{T'_i} = cp_i M d\ln T_i$$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM O●O
AM-GI	M (cont.)				

- Over small interval of time, let temperature of *i*th mass change by dT'_i when it is at temperature T'_i
- Heat received:

$$dQ_i = cp_i M dT'_i$$

Entropy Change:

$$dS_i = rac{dQ_i}{T_i'} = rac{cp_iMdT_i'}{T_i'} = cp_iMd\ln T_i'$$

Total entropy change:

$$\Delta S_i = cM(p_i \ln \overline{T} - p_i \ln T_i) = cM(p_i \ln \overline{T} - \ln T_i^{p_i})$$

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ○○●
AM-GN	√l (cont.)				

Agenda O	The General Idea O	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM ○O●

AM-GM (cont.)

Proof (Cont.)

• Summing over all masses:

$$\Delta S = cM\left(\ln \overline{T} - \ln \prod T_i^{p_i}
ight)$$

Agenda	The General Idea	CM Arguments	Pythagorean Theorem	Multiplicative Scoring	AM-GM
					000

AM-GM (cont.)

Proof (Cont.)

• Summing over all masses:

$$\Delta S = cM\left(\ln \overline{T} - \ln \prod T_i^{
ho_i}
ight)$$

• Second Law of Thermodynamics: $\Delta S \ge 0$ so

$$\overline{T} = \sum p_i T_i \ge \prod T_i^{p_i}$$