
Problem Set Solutions for

Gems of Linear Algebra
Nandana Madhukara

nandana.madhukara@gmail.com



2 Contents

Contents

1 Week 1 3

2 Week 2 4

3 Week 3 4

4 Week 4 6

5 Week 5 7

6 Week 6 7

7 Week 7 8

8 Week 9 9



3 1. Week 1

1 Week 1

(1) Let x1,x2, ...,xn be linearly independent vectors over F. Assume Ax1, Ax2, ..., Axn are linearly

dependent vectors over F. Therefore there exists weights c1, c2, ..., cn such that

c1Ax1 + c2Ax2 + · · ·+ cnAxn = 0.

Multiplying by B on the left gives us

c1BAx1 + c2BAx2 + · · · cnBAxn = 0

which reduces down to

c1x1 + c2x2 + · · ·+ cnxn = 0.

This is a contradiction so Ax1, Ax2, ..., Axn are linearly independent.

Since we have n linearly independent vectors, these vectors span F so there exist weights

c1, c2, ..., cn such that

u = c1Ax1 + c2Ax2 + · · ·+ cnAxn

for all vectors u over F. Since A is a linear transformation, we can “factor” it out to get

u = A(c1x1 + c2x2 + · · ·+ cnxn) = Av

where v is some vector over F. Therefore,

ABu = AB(Av) = A(BA)v = Av = u

for all vectors u. Therefore

AB = In.

(2) Notice that viwi is an m× n matrix where each column is of the form cv where c is some

scalar in F. Therefore each column of A =
∑r

i=1 = viwi is a linear combination of v1,v2, ...,vr.

This means that the column space of A is spanned by v1,v2, ...,vr which means that rank(A) ≤ r.

(3) If rank(A) = n, all columns ofA are linearly independent. NowAx is just a linear combination

of the columns so since the columns are linearly independent, x = 0 is the only solution to Ax = 0.

This means that dimension of the nullspace is 0 so the rank-nullity theorem holds.

Since rank(A) ≤ min(m,n), the only case left to consider is rank(A) = r < n. Therefore, there

are r linearly independent rows so there are n− r free variables. This means that every vector in

the nullspace can be expressed as a linear combination of n − r vectors so the dimension of the

nullspace is n− r. Therefore, the sum of the rank and the nullity is again n.

(4) We first prove that nullity(A) + nullity(B) ≥ nullity(AB). Let the basis of kerB be

{v1,v2, ...,vr}. Since kerB ⊆ kerAB, we can write the basis of kerAB as

{v1,v2, ...,vr,vr+1, ...,vs}.

Now we can see that {Bvr+1, ..., Bvs} are linearly independent.
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2 Week 2

(1) Notice that it suffices to prove that each λi = 0 if for all k ∈ [n],

n∑
i=1

λk
i .

We can prove this with induction on n. When n = 1, it is clear that λ1 must be 0 so the base case is

proven. Now we go on to the inductive step. If any one of the λi = 0 for all k, then we can use the

inductive hypothesis on the other λj ’s to finish the proof. Otherwise, consider the Vandermonde

Matrix:

V =


1 1 1 · · · 1

λ1 λ2 λ3 · · · an
λ2
1 λ2

2 λ2
3 · · · λ2

n
...

...
...

. . .
...

λk−1
1 λk−1

2 λk−1
3 · · · λk−1

n

 .

Now our criterion about the sum of the kth powers of the λi’s always being 0 reduces down to

V


λ1

λ2

λ3
...

λn

 =


1 1 1 · · · 1

λ1 λ2 λ3 · · · an
λ2
1 λ2

2 λ2
3 · · · λ2

n
...

...
...

. . .
...

λk−1
1 λk−1

2 λk−1
3 · · · λk−1

n




λ1

λ2

λ3
...

λn

 = 0.

This means that V so the determinant of V is 0. Since V is a Vandermonde Matrix, by Corollary

2.2, we see that there must exist i, j such that λi = λj . Now we can use the inductive hypothesis

on all the other λk’s excluding λj and we are done.

(2) Let us try to find a path-counting problem such that the number of ways of going from

vertex Ai to vertex Bj is
(
ai
bj

)
. We define our graph with vertices being lattice points and the edges

connecting adjacent vertices (excluding diagonal adjacencies). Our paths consists of stepping up

or to the right. Next we assign the vertices Ai’s and Bj ’s to the lattice points as the following:

Ai is assigned to (−ai, 0) and Bj is assigned (−bj , bj). Notice that the number of ways of getting

from Ai to Bj is the number ways to step up or to the right starting from (−ai, 0) and ending at

(−bj , bj). The length of this rectangle is ai − bj and the height is bj , so the number of paths is(ai−bj+bj
bj

)
=

(
ai
bj

)
. By the Lindström–Gessel–Viennot Lemma, the determinant of M is the number

of families of non-intersecting paths which must be positive.

(3) We can follow the same approach as the previous problem to get lattice points the Ai’s are

assigned to are (i− 1, 0) and the Bj ’s are assigned to (m− j + 1, j − 1). Now we count the number

of families non-intersecting paths. We know that A1 must go to B1 since if it went to any other

Bj , then B1 would be blocked off. Similarly, A2 has to go to B2 or going to another Bj would

block off Bj so in general, we see that Ai goes to Bi. However this means that the only family of

non-intersecting paths is sideway L’s that form shells like a Matryoshka doll. This means that the

determinant is just 1 .

3 Week 3

(1) We must prove that Mii = CiC
T
i . This means that the ith row in Ci is missing and the ith

column in CT
i is missing. The row missing corresponds to the ith row missing in Mii and the



5 3. Week 3

missing column corresponds to the ith column missing in Mii. This can be seen by the definition

of matrix multiplication.

(2) Let us first consider mii which is just the dot product of the ith row vector of C and the ith

column vector of CT but this is just the same vector. The jth entry of this vector is ±1 if edge j

contains vertex i and 0 if it doesn’t. Therefore. dot producting this vector with itself gives us the

number of entries that are nonzero which is the number of edges connected to i or the degree of i.

Now consider vertex i and j such that i ̸= j. Now the mij is the dot product of the ith row and

jth row of C. Now if i and j are not connected, then ±1’s of row i will not line up with the ±1’s of

row j so the dot product will be 0. Now if i and j are connected, then a −1 of row i will align with

a 1 of row j or vice versa to get a dot product of −1. Therefore mij is −1 if i and j are connected

and 0 if i and j are not connected.

(3) Consider some row i of A. We know that

det(A) =
n+1∑
j=1

aij(−1)i+jAij = 0

since the sum of rows and columns is 0. Notice that

n+1∑
j=1

aij = 0

so

(−1)i+1Ai1 = (−1)i+2Ai2 = · · · = (−1)i+n+1Ai(n+1)

for any row i. Similarly, if we do a cofactor expansion along columns instead of rows, we get

(−1)1+jA1j = (−1)2+jA2j = · · · = (−1)n+1+jA(n+1)j

so all cofactors must be equal no matter with i and j are.

(4) If we remove the edge between vertex 1 and vertex n, the Laplacian of this graph would be

M =


n− 2 −1 −1 · · · 0

−1 n− 1 −1 · · · −1

−1 −1 n− 1 · · · −1
...

...
...

. . .
...

0 −1 −1 · · · n− 2

 .

Removing the first row and column gives us

M11 =


n− 1 −1 · · · −1

−1 n− 1 · · · −1
...

...
. . .

...

−1 −1 · · · n− 2

 .

Adding rows 2 to n− 1 to row 1 gives us
1 1 · · · 0

−1 n− 1 · · · −1
...

...
. . .

...

−1 −1 · · · n− 2

 .
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Adding the first row to each of the other rows gives us
1 1 · · · 0

0 n · · · −1
...

...
. . .

...

0 0 · · · n− 2

 .

This is just an upper triangular matrix so its determinant is nn−3(n− 2) .

(5) The Laplacian matrix of this graph is

M =



n −1 −1 −1 · · · −1

−1 3 −1 0 · · · −1

−1 −1 3 −1 · · · 0

−1 0 −1 3 · · · 0
...

...
...

...
. . .

...

−1 −1 0 0 · · · 3


.

Now we see

M11 =


3 −1 0 · · · −1

−1 3 −1 · · · 0

0 −1 3 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 3


and we must take the determinant of this. I have tried doing row operations but I can’t seem to

find a way to find the determinant.

4 Week 4

(1) We can go through the same process as Theorem 1.1 but we hit a problem when lii is 0. However,

we can just make all the entries of U in row i just 0. Now the main diagonal of U is always 1 so

detU = 1 ̸= 0 meaning that U is nonsingular. Therefore at least one of L and U is nonsingular.

Now we know that the lii’s are nonzero iff A is invertible. Since A being invertible is equivalent to

k = n and the lii’s being nonzero is equivalent to L being nonsingular, we know that L and U are

nonsingular if and only if k = n.

(2) We claim that every lower triangular matrix L can be factored as L′D where L is a lower

triangular matrix with diagonal entries of 1 and D is a diagonal matrix. Notice that multiplying

by a diagonal matrix on the right just scales column j in L′ by the nonzero entry of column j in D.

Therefore, we can scale each column down by the the entry in that column that is in the diagonal to

get L′ which must have diagonal entries of 1. Now we make the diagonal entries of D the diagonal

entries of L and we are done.

In a similar fashion, we claim that every upper triangular matrix U can be factored as DU ′

where U is a upper triangular matrix with diagonal entries of 1 and D is a diagonal matrix. Notice

that multiplying by a diagonal matrix on the left just scales row i in U ′ by the nonzero entry of

row i in D. Therefore, we can scale each row down by the the entry in that row that is in the

diagonal to get U ′ which must have diagonal entries of 1. Now we make the diagonal entries of D
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the diagonal entries of U and we are done. All of this means that for any invertible matrix A,

A = LU = L′D1D2U
′ = L′DU ′

since the product of two diagonal matrices is a diagonal matrix.

5 Week 5

(1) A point x = [x0 : · · · : xn] is on a d-dimensional plane if it satisfies

a0x0 + a1x1 + · · ·+ ad+1xd+1 = 0.

We can think of this as a dot product of an x vector and an a vector and an x vector so we can just

apply our projective transformation to both sides. If the image of x is x′, then we have

a · x′ = a0x
′
0 + a1x

′
1 + · · ·+ ad+1x

′
d+1 = 0

meaning that the transformation of every point creates a d-dimensional plane.

(2) We can dehomogenize the coordinates by representing [a : b] with a/b for nonzero b and [a : 0]

with ∞. This means that we can dehomogenize P1, P2, P3, Q1, Q2, Q3 into p1, p2, p3, q1, q2, q3 ∈
k ∪ {∞}. Notice that if there exist a0, a1, a2, a3 such that

a0
(
a
b

)
+ a1

a2
(
a
b

)
+ a3

=
c

d
,

then there exists a projective transformation that maps [a : b] → [c : d]. This is because the matrix

for the transformation will just be (
a0 a2
a1 a3

)
.

We can verify this by multiplying by [a : b] = [a/b : 1], we get

(
a/b 1

)(a0 a2
a1 a3

)
=

(
a0 · a/b+ a1 a2 · a/b+ a3

)
→

[
a0

(
a
b

)
+ a1

a2
(
a
b

)
+ a3

: 1

]

and this must equal [c : b] = [c/b : 1].

Now this means that we have four variables (the ai’s) and three equations (one for each Pi). This

means that there does exist a solution but there also exists a free variable. This is fine, though,

because we need to have a unique matrix up to scaling and this definitely holds.

6 Week 6

(1) First we can see that when we do scalar multiplication, we just multiply the coefficients by the

scalar. Since F is a field, it is closed so even after scalar multiplication so the vector is still in the

set of symmetric polynomials because coefficients will stay the same even after scalar multiplication.

Now we need to prove the associative property and the distributive property. Let us start with

proving a · (b · v) = (ab) · v. When we multiply v by b, we are multiplying the coefficients by b and

after this, we multiply the coefficients of the symmetric polynomial by a. This is just the same as

multiplying the coefficients by ab and we are done.
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Next we move on to the distributive property. When we add two symmetric polynomials, we

can think of just adding the coefficients of two like terms. If a term exists in one polynomial and

it doesn’t in the other, we can think of this just add the missing term but give it a coefficient of 0.

This just means that we can think of u+ v as the sum of two vectors in F k for some k. However,

we know that F k is a vector space over F so the distributive property must hold.

For the dimension, we know that xi can have an exponent from 0 to d. This gives us a total of

(d+ 1)n different terms. Now the terms can be grouped into groups of n since the polynomials are

symmetric so the dimension is (d+ 1)n/n .

(2) First F [x1, ..., xn]
G is the field of polynomials that are invariant under G. Again, scalar

multiplication just multiplies the coefficients by the scalar so coefficients stay the same so the

multiplied vector is still in F [x1, ..., xn]
G. Now we can check associativity and the distributive

property in the same way as the previous problem since still, all we are doing is multiplying the

coefficients.

7 Week 7

(1) A strictly diagonally dominant matrix A is a matrix that satifies

|aii| >
∑
j ̸=i

|aij |

for all i. For the sake of contradiction, assume A is not invertible. This means that there exists a

nonzero v such that

Av = 0.

Now let vi be the entry with the largest magnitude. This means that∑
j

aijvj = 0 =⇒ aiivi = −
∑
j ̸=i

aijvj .

Therefore,

aii = −
∑
j ̸=i

vj
vi
aij

so by the Triangle Inequality, we have

|aii| ≤
∑
j ̸=i

∣∣∣∣vjvi aij
∣∣∣∣ ≤ ∑

j ̸=i

|aij |

which is a contradiction.

For the second part, by the Gershgorin Circle Theorem, the eigenvalues satisfy λ ∈ D(aii,
∑

j ̸=i |aij |)
for some i. However, since A is strictly diagonally dominant and since the diagonal entries are all

positive, this must mean that the eigenvalues have positive real parts.

(2) There must be a matrix Q such that

Q−1AQ = J =


J(λ1)

J(λ2)
. . .

J(λn)


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where

J(λi) =


λi 1

λi 1
. . . 1

λi


is a mi×mi matrix. Now we define Di to be the diagonal matrix with diagonal entries 1, t, t2, ..., tmi

for some real t and we define D as the diagonal matrix with diagonal entries D1, D2, ..., Dn. Now

we have

D−1
i J(λi)Di =


λi t

λi t
. . . t

λi


and

D−1JD = D−1Q−1AQD = S−1AS =


D−1

1 J(λ1)D1

D−1
2 J(λi)D2

. . .

D−1
n J(λn)Dn


where we define S ≡ QD. Therefore G(S−1AS) is just the union of disks with centers as the

eigenvalues and radii as t or 0 since S−1AS is the matrix with eigenvalues along the diagonal and t

along the superdiagonal. Therefore the intersection over all possible t gives us the set of eigenvalues.

(4) First we notice that each disk contains a unique eigenvalue. Now since the matrix is real,

the characteristic polynomial of the matrix must have real coefficients. This means that for every

root λ, we know that λ̄ is also a root. In other words, the eigenvalues form complex conjugate pairs.

However, the disks are centered on the real axis so the disk contains λ iff it contains λ̄ so λ = λ̄.

Therefore, all the eigenvalues are real.

8 Week 9

(1) Since the rank is 1, all rows are multiples of each other and all columns are multiples of each

other. Now when we multiply u and v, we have a matrix with columns that are multiples of u.

We can just make u a column of B and choose the entries of v as the right scalar multiples which

means we are done.

(2) We know that there exists an A and λ such that

Av⃗ = λv⃗ = ∆v⃗.

However, since λ is the largest eigenvalue, we know that v⃗ is just the vector of all 1’s. This means

that A times this vector is a vector of all ∆’s so since the entries of A are either 1 or 0, all rows of

A must have exactly ∆ 1’s which means that the graph is ∆-regular.

(3) By Weyl’s Theorem, we have

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

We can subtract λk(A) from everything to get

λ1(B) ≤ λk(A+B)− λk(A) ≤ λn(B).
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This means that λk(A+B)− λk(A) is in between the highest and lowest eigenvalues of B so

|λk(A+B)− λk(A)| ≤ ρ(B).
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