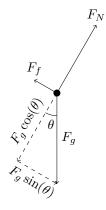
# Forces Problems

#### Fun With Fiziks

July 5, 2022

# **Practice Problems**


## Easy Problems

| 1. | <ul><li>(a) 49 N</li><li>(b) 1.73</li></ul> |
|----|---------------------------------------------|
| 2. | 4 N                                         |
| 3. | $3.27 \text{ m/s}^2$                        |
| 4. | F                                           |
| 5. | $160 \mathrm{~m/s^2}$                       |
| 6. | $9.9 \mathrm{~m/s}$                         |
| 7. | $3.16 \mathrm{~m/s}$                        |

8. 204.08 m  $\,$ 

### Hard Problems

9. First we use draw the free body diagram:



Where  $F_N$  is the normal force,  $F_f \leq \mu_s F_n$  is the frictional force, and  $F_g = mg$  is the gravitational force. Let  $\theta$  be the maximum angle we are trying to find. At this angle, friction will be maximized and it will perfectly balance out with the  $F_g$  component along the plane

$$F_f - F_g \sin(\theta) = \mu_s F_n - mg \sin(\theta) = 0.$$

The block is also not accelerating perpendicular to the plane so

$$F_n - mg\cos(\theta) = 0 \implies F_n = mg\cos(\theta).$$

This means that

$$\mu_s mg\cos(\theta) - mg\sin(\theta) = 0 \implies \mu_s = \tan(\theta)$$

 $\mathbf{SO}$ 

$$\theta = \boxed{\tan^{-1}(\mu_s)}.$$

10. (a) The acceleration along the plane is  $g\sin(\theta)$  (when there is no friction) and the distance the block travels is  $h/\sin(\theta)$ . Therefore, we use the following kinematics formula:  $v^2 = v_0^2 + 2a\Delta x$ . Plugging in the appropriate values, we have

$$v = \sqrt{2g\sin(\theta) \cdot \frac{h}{\sin(\theta)}} = \boxed{\sqrt{2gh}}$$

(b) The new acceleration is  $g(\sin(\theta) - \mu_k \cos(\theta))$  so

$$v = \sqrt{\frac{2gh(\sin(\theta) - \mu_k \cos(\theta))}{\sin(\theta)}}$$

11.  $a_1 = 3g/7$  and  $a_2 = g/7$