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1. Energy

1.1. Work. In physics, when a constant force F is acting on an particle and displaces it by
∆x, work is defined by the equation

W = F∆x.

If the force is not in direction of displacement the definition becomes W = F∆x cos θ. In
vector form, this becomes W = F · ∆x where we are taking the dot product. Notice that
work is a scalar quantity and its units is called a joule (J).

Now when the force is not constant, in one-dimension, the work is given by

W =

∫
F dx.

This means that work is the area under the curve of a F vs. x curve.

1.2. Work Energy Theorem. The kinetic energy of an particle is defined as

K =
1

2
m|v|2

where |v| is the speed of the particle. Notice that this is a scalar quanity like work and also
has the same units.

Theorem 1.1 (Work-Energy). The work done on a particle is equal to the chance in kinetic
energy of the particle. That is,

W = ∆K

1.3. Potential Energy. A conservative force is defined as a force where the work done to
move a particle between two points doesn’t depend on the path taken. For example, this is
the case for gravity and springs. However, for friction, a longer path will require more work
since more energy will be dissipated as heat.

Now in addition to kinetic energy, a particle can also have a potential energy associated
with a conservative force defined as

∆U = −W.

This equation basically says that the change in potential energy between two points is neg-
ative of the amount of work taken to move the particle from one point to the other. Notice
that you can only calculate changes in potential energy so when dealing with potential energy
problems, you set one point to have 0 potential energy and calculate the potential energy
for any other point.

We can plug in our definition for work to get

F = −∆U

∆x
=

dU

dx
.
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This allows you to calculate potential energy from forces. For example, in the case of gravity,
we have

−mg = −∆U

∆h
=⇒ ∆U = mg∆h

where ∆h is the displacement of height. If we set the floor to have 0 potential energy, we
get

U = mgh

where h is the height off the floor. For a spring, if a resting spring has 0 potential energy,
we get

U =
1

2
kx2

where x is how much the spring stretches. This are both worthwhile formulas to remember.

1.4. Conservation of Energy. Combining the definition for potential energy and work-
energy theorem, we get

−∆U = ∆K =⇒ ∆(U +K) = 0.

This is conservation of energy i.e. the sum of the potential and kinetic energy is conserved.
This is the equation used in most energy problems. You write the initial energy and the

final energy and set it equal to each other. For example, if the problem involves gravity and
a spring, you should write down

Ki + Ugravity
i + U spring

i = Kf + Ugravity
f + U spring

f .

Then you plug in what you know and solve for the unknown.
Now when you deal with non-conservative forces like friction, you have to add an extra

term:
∆(U +K) = Wnc.

You can still calculate the initial and final energies like before, but you also have to add the
work done by non-conservative forces like friction to the final energy.

2. Momentum

Momentum is defined as
p = mv

which is a vector. We can write a more general version of Newton’s second law:

F =
dp

dt
.

When the mass is constant, this reduces down to F = mdv/dt = ma.

2.1. Impulse. Impulse is defined as

J =

∫
F dt.

Like work, this means that impulse is the area under a force vs. time curve. When the force
is constant, this reduces down to J = F∆t. Since F = dp/dt, we have

J = ∆p.

This is the equation you will most likely be using. The idea is that a force of a duration of
time creates an impulse which changes the momentum of the particle.
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2.2. Conservation of Momentum. Just like energy, momentum is also conserved. Since
∆p = F∆t, when there are no external forces, the change in momentum is 0 so momentum
is conserved. Just like energy, this is you write the initial and final momentum and set them
equal to each other.

The most common place to find conservation of momentum is collision problems. There
are two types of collision problems:

(1) Elastic collisions: momentum and kinetic energy are conserved
(2) Inelastic collisions: momentum is conserved but not kinetic energy

Notice that momentum is always conserved but kinetic energy can be lost as heat, sound,
etc. In inelastic collisions, there is also completely inelastic collisions where the objects stick
together. In general, for collision problems, you write down conservation of momentum and
conservation of kinetic energy, if needed, and solve for whatever you need to solve for.

3. Problems

3.1. Easy.

(1) Jonathan is dropping his egg drop project off of a 10m high balcony. How fast is it
going just before it hits the ground?

(2) Andrew loves to be carried! Luke wants to get big muscles, so he exercises by lifting
Andrew. Andrew weighs 55 kg and Luke lifts him 2m off the ground every time. If
Luke is able to get 8 reps before his arms collapse, how much work does Luke do?

(3) Bob has three identical balls that he wants to throw off a building. He throws ball A
at an angle above the horizontal, ball B horizontally, and ball C at an angle below
the horizontal. Rank the speeds of the three balls just before they hit the ground.

(4) A 1000 kg rocket ship is moving at 10m/s, which is way too slow! To travel faster,
the astronauts turn on the rocket engine, which provides 100N of thrust. After the
rocket moves 10m, how fast is it traveling?

(5) For her physics lab, Chris wants to determine the spring constant of a spring. She
does this by holding the spring vertically, dropping a 1kg potato on it, and measuring
how far the spring compresses. She throws the potato down at an initial speed of
2m/s at a height 1m above the spring. The spring compresses 0.5m. What is the
spring constant?

(6) A roller coaster has a steep drop that immediately goes into a circular loop that is
20m in diameter. What is the minimum height that the roller coaster needs to drop
from so that it can successfully make it around the loop?

(7) Sid is skiing (assume there is no friction) at 5m/s. Unfortunately, he is distracted
and doesn’t notice that there is a concrete floor ahead, where there is friction. The
coefficient of friction µ = 0.5. Sid weighs 10 kg.
(a) How far does he travel before coming to a stop?
(b) Sid wants to install rocket boosters to his skis so that he can continue traveling

at a constant velocity of 5m/s on the concrete. What is the power required?

3.2. Hard.

(1) A bungee-jump cord has length l and is initially folded back on itself. The jumper
has mass m, and after she falls off the platform, she is in freefall for a height l. After
that, the cord becomes taut and stretches; assume that it acts like an ideal spring
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with a particular spring constant. It is observed that the lowest point the jumper
reaches is a distance 2l below the platform.
(a) What is the spring constant?
(b) What is the jumper’s acceleration at the lowest point?
(c) At what position (specify the distance below the platform) is the jumper’s speed

maximum? What is this speed?
(2) A platform has a rope attached to it which extends vertically upward, over a pulley,

and then back down. You stand on the platform. The combined mass of you and the
platform is m.
(a) Some friends standing on the ground grab the other end of the rope and house

you up a height h at constant speed. What is the tension in the rope? How
much work do your friends do?

(b) Consider instead the scenario where you grab the other end of the rope and hoist
yourself up a height h at constant speed. What is the tension in the rope? How
much work do you do?

(3) A block with mass m slides with speed v along a frictionless table toward a stationary
block that also has mass m. A massless spring with spring constant k is attached to
the second block. The is the maximum distance the spring gets compressed?

(4) A mass m moving with speed v0 collides elastically with a stationary mass 2m.
Assuming that the final speeds of the masses turn out to be equal, find this speed,
and also find the two angles of deflection (relative to the path of the mass m before
collision).
(a) A hose shoots a stream of water vertical upward. The water leaves the hose at

speed v and at a mass rate R (kg/s). A horizontal board with mass m is placed
a very small distance above the hose and then released. What should m be so
that the board hovers at this height? Assume that when the water crashes into
the board, it bounces off essentially sideways.

(b) If you break the board in half, so that its mass is now m/2, how high above the
hose should it be located if you want it to hover in place?

(c) In part (a), what should m be if the stream of water is replaced by a stream of
marbles that bounce off the board elastically (that is, they bounce off downward
with the same speed v)?
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