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A Counting Problem

Question

How many positive integers less than n are relatively prime to n?

This is hard! We call this number ϕ(n) where ϕ is called the Euler
Totient Function.

Question

What if n is

1 2, 4, or 8

2 3, 9, or 27

3 5, 25?

Any patterns?
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A pattern?

Solution

We can see the pattern is that ϕ(pk) = pk − pk−1 for a prime p.
Can we prove this?

Proof.

1 Let m ≤ pk be any positive integer.

2 Since p is prime, the only possible values for gcd(m, pk) are
1, p, ..., pk .

3 gcd(m, pk) > 1 =⇒ m ∈ {p, 2p, ..., pk−1p = pk}.
4 There are pk−1 numbers in this set which are the numbers

that are not relatively prime with pk

5 Therefore, total is pk − pk−1

■
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More patterns

Question

What if n is 3, 4, or 12? What about if n is 3, 6, or 18? Any
patterns?

Solution

We can see the pattern is ϕ(mn) = ϕ(m)ϕ(n) only if
gcd(m, n) = 1.

Proof.

It’s too complicated :) It uses the Chinese Remainder Therorem if
you want to think about it. ■
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A formula for ϕ(n)

Question

Using these properties, can you find a formula for ϕ(n)?

Solution

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Proof.

We know that

ϕ(pk) = pk − pk−1 = pk−1(p − 1) = pk
(
1− 1

p

)
Now we can see the formula works by the multiplicative
property. ■



Euler’s Theorem RSA Cryptosystem Discrete Logarithms Elliptic Curves

A formula for ϕ(n)

Question

Using these properties, can you find a formula for ϕ(n)?

Solution

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Proof.

We know that

ϕ(pk) = pk − pk−1 = pk−1(p − 1) = pk
(
1− 1

p

)
Now we can see the formula works by the multiplicative
property. ■



Euler’s Theorem RSA Cryptosystem Discrete Logarithms Elliptic Curves

A formula for ϕ(n)

Question

Using these properties, can you find a formula for ϕ(n)?

Solution

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Proof.

We know that

ϕ(pk) = pk − pk−1 = pk−1(p − 1) = pk
(
1− 1

p

)
Now we can see the formula works by the multiplicative
property. ■



Euler’s Theorem RSA Cryptosystem Discrete Logarithms Elliptic Curves

Euler’s Theorem

Theorem (Euler)

If gcd(a, n) = 1, then

aϕ(n) ≡ 1 (mod n)

Proof.

1 Let R = {x1, x2, ..., xϕ(n)} be the integers less than n relatively
prime to n.

2 aR = {ax1, ax2, ..., axϕ(n)} ≡ R (mod n)

3

ϕ(n)∏
i=1

xi ≡
ϕ(n)∏
i=1

axi ≡ aϕ(n)
ϕ(n)∏
i=1

xi (mod n)

■
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RSA Cryptosystem
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The Basics of Cryptography

Remark (Kerkoff)

When assessing the security of a cryptosystem, one must always
assume that the enemy knows the method being used.

Definition

1 Symmetric Key Encryption is when both the encryption and
decryption key must be kept a secret between Alice and Bob.

2 Asymmetric Key Encryption is when the encryption key is
made public but the decryption key is kept a secret by Bob.
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The RSA Cryptosystem

RSA

1 Bob chooses two distinct primes p and q and computes
n = pq.

2 Bob chooses e such that gcd(e, (p − 1)(q − 1)) = 1.

3 Bob computes the d such that de ≡ 1 (mod (p − 1)(q − 1)).
(Bob can use the Euclidean Algorithm for speed).

4 Bob makes n and e public while keeping p, q, and d private.

5 Alice encrypts her message 0 ≤ m < n as c ≡ me (mod n)
where c is the ciphertext she sends to Bob. (If m is not in
range, she breaks it into smaller blocks).

6 Bob recovers the message by computing cd ≡ m (mod n)
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Why does this work?

Question

Why can Bob recover the message so easily?

Solution

First we claim that cd ≡ m (mod p) and (mod q)

Proof.

1 WLOG we only consider modulo p.

2 cd = (me)d = mde .

3

mde = m1+kϕ(n) = m ·mkϕ(p)ϕ(q) = m · (mϕ(p))kϕ(q).

■
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Why does this work? (cont.)

Proof.

1 If gcd(m, p) = 1, by Euler’s Theorem

m · (mϕ(p))kϕ(q) ≡ m · 1kϕ(q) ≡ m (mod p).

2 If gcd(m, p) ̸= 1, since p is prime, we have m = m′p, so

m · (mϕ(p))kϕ(q) ≡ 0 ≡ m (mod p)

completing our proof of our claim.

■

Solution

Now our claim tells us

cd = k1p +m, cd = k2q +m
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Why does this work? (cont.)

Solution

Multiplying the first equation by q and the second by p and adding
the two, we get

(p + q)cd = (k1 + k2)pq + (p + q)m.

Another way of writing this is

(p + q)cd ≡ (p + q)m (mod n).

Now p + q cannot be 1, p, q or n so this means that

cd ≡ m (mod n).
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Try to hack this

Remark

One thing Eve can try do is trying to take the eth root of c ≡ me

(mod n) to find m. However, this isn’t as simple as plugging the
expression into a calculator since c1/e is not an integer most of the
time so reducing this modulo n is impossible.

Remark

Another thing Eve can try doing is finding the decryption exponent
with

de ≡ 1 (mod ϕ(n)).

This requires the knowledge of ϕ(n) and this is essentially the
same as knowing p and q which is very hard.



Euler’s Theorem RSA Cryptosystem Discrete Logarithms Elliptic Curves

Try to hack this

Remark

One thing Eve can try do is trying to take the eth root of c ≡ me

(mod n) to find m. However, this isn’t as simple as plugging the
expression into a calculator since c1/e is not an integer most of the
time so reducing this modulo n is impossible.

Remark

Another thing Eve can try doing is finding the decryption exponent
with

de ≡ 1 (mod ϕ(n)).

This requires the knowledge of ϕ(n) and this is essentially the
same as knowing p and q which is very hard.



Euler’s Theorem RSA Cryptosystem Discrete Logarithms Elliptic Curves

Discrete Logarithms



Euler’s Theorem RSA Cryptosystem Discrete Logarithms Elliptic Curves

The basics

Definition

Let p be a prime and let α and β be nonzero integers modulo p.
Additionally, let n be the smallest positive integer such that
αn ≡ 1 (mod p). The discrete logarithm of β with respect to α
denoted with Lα(β) is the integer x modulo n such that

αx ≡ β (mod p).

Definition

A primitive root of a modulo p is an α such that every β modulo p
is a power of α.

These computations are very hard to do (efficiently)!
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ElGamal Cryptosystem

ElGamal

1 Bob chooses a prime p and a primitive root α. He also
chooses a secret number b and computes β = αb (mod p).
He then makes (p, α, β) public.

2 Alice chooses a message 1 ≤ m < p (breaking the message up
if it is not in this range) and records Bob’s public key.

3 Alice chooses a secret integer a and computes r ≡ αa

(mod p).

4 Alice also computes t ≡ βam (mod p).

5 Alice sends (r , t) to Bob.

6 Bob decrypts by computing tr−b ≡ m (mod p). (He can
compute the modular inverse quickly with the Euclidean
Algorithm).
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Why? and How to hack?

Solution

The reason this works is because

tr−b ≡ βam(αa)−b ≡ (αb)amα−ab ≡ m (mod p).

Remark

One thing to note is that Alice must choose a different secret
integer a every time she sends a message because if Alice sends
two messages m1 and m2 with the same a, Eve can find m2 if she
finds m1. This is because r will be the same and Eve will know
(r , t1) and (r , t2). Notice that

t1
m1

≡ βa ≡ t2
m2

(mod p)

so m2 ≡ t2m1/t1 (mod p).
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Elliptic Curves
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The basics

Definition

Let K be any field of characteristic not 2 and let a, b, c ∈ K . An
elliptic curve E is the set of points

E = {(x , y) : x , y ∈ K , y2 = x3 + ax2 + bx + c}.

We also add the point (∞,∞) to this set to represent the “point
at infinity” in this curve. We denote this point with ∞.

Example

We can also consider elliptic curves in modulo p since the set of
integers modulo p is field of characteristic not 2. For example, E
can be the set of points that satisfy

y ≡ x3 + 2x − 1 (mod 5).
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Extended Example

Example

This would mean that the elements of E are

E = {(0, 2), (0, 3), (2, 1), (2, 4), (4, 1), (4, 4),∞}

where we have included the point at infinity. These are the elliptic
curvues useful in cryptography.

Definition (Addition)

Let P1 and P2 be points on an elliptic curve E with K = R. We
define the sum of P1 and P2 to be the point P3 with obtained
through the following construction: we draw a line through P1 and
P2 and see where it interesects E . We then take the reflection of
this point across x-axis to get P3.
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The Addition Law

Definition (Addition Law)

Let E be the elliptic curve y2 = x3 + bx + c and let P1 = (x1, y1)
and P2 = (x2, y2). Then the sum

P1 + P2 = P3 = (m2 − x1 − x2,m(x1 − x3)− y1)

where

m =

{
(y2 − y1)/(x2 − x1) if P1 ̸= P2

(3x21 + b)/(2y1) if P1 = P2.

If the slope is undefined or infinite, P3 = ∞. Finally, the last
addition law is

P +∞ = P.
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Elliptic Curve ElGamal Cryptosystem

Elliptic Curve ElGamal

1 Bob chooses an elliptic curve E modulo p, so K = Z\pZ, and
a point α on E . He then chooses a secret number b and
computes

β = bα = α+ α+ · · ·+ α

where we are adding α b times. Finally, Bob makes (E , α, β).

2 Alice takes her message m and encodes it as a point on the
elliptic curve. She chooses her secret number a and computes
r = aα and t = m + aα and sends (r , t) to Bob.

3 Bob takes this pair and decrypts the message by computing

t − ar = m.
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The End

Fin
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