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3 1. Week 1

1 Week 1

(1) We have

dfx(c1h1 + c2h2) = lim
t→0

f(x+ t(c1h1 + c2h2))− f(x)

t

= lim
t→0

f(x+ tc1h1 + t(c2h2))− f(x+ tc1h1)

t

+ lim
t→0

f(x+ t(c1h1))− f(x)

t

= lim
t→0

dfx+tc1h1(c2h2) + dfx(c1h1

= dfx(c2h2) + dfx(c1h1)

Now notice that

dfx(ah) = lim
t→0

f(x+ t(ah))− f(x)

t

= a lim
t→0

f(x+ at(h))− f(x)

at
.

Setting at = b gives us

dfx(ah) = a lim
t→0

f(x+ at(h))− f(x)

at

= a lim
t→0

f(x+ bh)

b

= adfx(h)

Therefore,

dfx(c1h1 + c2h2) = dfx(c1h1) + dfx(c2h2) = c1dfx(h1) + c2dfx(h2)

and we are done.

(2) Let ϕ : V1 → U1, ψ : V2 → U2, ω : V3 → U3 be coordinate charts for X,Y, Z, respectively.

First we know that if f1 : Rn → Rk and f2 : Rk → Rm are smooth, then f2 ◦ f1 : Rn → Rm is

smooth. This is because if we can take continuous partial derivatives of any order of f1 and f2, we

can do the same for f2 ◦ f1 by the chain rule.

Next, since f is smooth, we know that ψ ◦ f ◦ ϕ−1 is smooth and since g is smooth, we know

that ω ◦ g ◦ ψ−1 is smooth. By the fact from before, we know that

ω ◦ g ◦ ψ−1 ◦ ψ ◦ f ◦ ϕ−1 = ω ◦ (g ◦ f) ◦ ϕ−1

is smooth. Therefore, by definition, g ◦ f is smooth.

To prove that g ◦ f is a diffeomorphism, we must prove that (g ◦ f)−1 = f−1 ◦ g−1 is smooth.

Like before, we know that ϕ◦ f−1 ◦ψ−1 and ψ ◦ g−1 ◦ω−1 are smooth since f−1 and g−1 are smooth

(and this is because f and g are diffeomorphisms). Therefore,

ϕ ◦ f−1 ◦ ψ−1 ◦ ψ ◦ g−1 ◦ ω−1 = ϕ ◦ (f−1 ◦ g−1) ◦ ω−1

is smooth so f−1 ◦ g−1 is also smooth.

(3) Let the dimension of X be m < n and let ϕ : V → U a coordinate chart of X. Additionally,

let fX : X → R be the restriction of f to X. Now we know that if fX ◦ ϕ−1 : U → R is smooth,
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then fX must smooth but we can easily see that fX ◦ ϕ−1 must have continuous partial derivatives

of all orders since f has continuous partial derivatives of all orders. Therefore fX ◦ ϕ−1 is smooth

so fX is smooth.

(4)

(a) Consider the map f : Bn → Rn defined by

f(x) =

ln
(
1+||x||
1−||x||

)
· x
||x|| x ̸= 0

0 x = 0

whose inverse is

f−1(x) =

{
1−e−||x||

1+e−||x|| · x
||x|| x ̸= 0

0 x = 0
.

We can see that both of these are smooth so f is a diffeomorphism.

(b) Let ϕ : V → U be a chart of X. Now consider an open ball B centered at ϕ(x). Let

W = ϕ−1(B) so this is a neighborhood of x. Therefore W is diffeomorphic to B which is

diffeomorphic to Rn (from the previous part) and we are done.

(5) We can clearly see that f is smooth since the derivative is 3x2 which is continuous. Now the

inverse is f−1(x) = x1/3 which has a derivative of 1
3x

−2/3 and this is not defined at x = 0 so f is

not a diffeomorphism.

(6) First say we pick any point on the set that isn’t the origin. We can pick an open interval

centered at this point and this is diffeomorphic to itself in R1. However, if we pick the origin, its

neighborhood is T-shaped and which is not diffeomorphic to a neighborhood of any Euclidean space.

(7) The graph of this is either a hyperboloid of one or two sheets or a cone: one sheet when

a is positive, two sheets when a is negative, and a cone when a = 0. When a is positive, we can

split the surface into three parts: the top, middle and bottom. Each of these is diffeomorphic to a

neighborhood in R2 so the Xa is a manifold when a > 0. Next, when a is negative, we can easily

see that top and bottom sheets are both diffeomorphic to a neighborhood in R2 so Xa is again a

manifold. Finally, when a = 0, the problem arises at the origin since there is not neighborhood

containing it that is diffeomorphic to a neighborhood in R2. Therefore Xa is a manifold when a ≠ 0.

(8) Let x be the point that is removed and consider the plane tangent to the sphere at the point

opposite to x. For our diffeomorphism, we can do a stereographic projection where we shoot rays

in all directions from x and see where it crosses the sphere and where it hits the plane. However,

the plane is Rn since the sphere lives in Rn+1 so Sn with a point missing is diffeomorphic to Rn.
Notice that the reason we needed the point to be missing is because the stereographic projection is

not defined at x.

(9)

(a) Consider the function

f0(x) =

{
e−1/x x > 0

0 x = 0

and we claim this is smooth. We know that the two separate pieces are smooth so all we need

to do is prove that all their derivatives match up at x = 0. The nth derivative of 0 is just 0

while the nth derivative of e−1/x is

dn

dxn
(e−1/x) =

P (x)e−1/x

x2n
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where P (x) is (n− 1)th degree polynomial. This means that

dn

dxn
(e−1/x)

∣∣∣
x=0

= lim
x→0

P (x)e−1/x

x2n
= 0

so g(x) is smooth.

Now we define the function f(x) = f0(x− a)f0(b− x) so when x ̸∈ (a, b), either x− a or b− x

is negative so either g(x − a) or f0(b − x) is 0 meaning that f(x) = 0. When x ∈ (a, b), we

can clearly see that f(x) is positive so this function satisfies the properties for the problem.

We can also easily see that f(x) is smooth since f0(x) is smooth.

(b) Consider the function

g(x) =

∫ x
a f(x) dx∫ b
a f(x) dx

.

When x ∈ (a, b) notice that the numerator is less than the denominator since f(x) > 0 so

0 < g(x) < 1. When x < a, we have

g(x) =

∫ x
a f(x) dx∫ b
a f(x) dx

=
−
∫ a
x f(x) dx∫ b
a f(x) dx

= 0

since f(x) = 0 when x < a. Now when x > b, we have

g(x) =

∫ x
a f(x) dx∫ b
a f(x) dx

=

∫ b
a f(x) dx+

∫ b
x f(x) dx∫ b

a f(x) dx
=

∫ b
a f(x) dx+ 0∫ b
a f(x) dx

= 1

again since f(x) = 0 when x > b. Finally, we can see that g(x) is smooth since first,

dg

dx
=

f(x)∫ b
a f(x) dx

by the Fundamental Theorem of Calculus. Second, higher order derivatives of this are contin-

uous since f(x) is smooth so all of this means that g(x) is smooth.

(c) We can use the previous parts to see that this function is simply h(x) = g(||x||) which is

smooth.

(11) By definition, we have

dιx(v)(ϕ) = v(ϕ ◦ ι)
for any ϕ ∈ C∞(Y ). Now we can see that ϕ ◦ ι is just the restriction of ϕ to X ⊆ Y so dιx must be

the inclusion map.

(12) We must find a bijection between TxU and TxX and we are already half way done from the

previous problem. Since U is a submanifold of X, we know that dιx : TxU → TxX is the inclusion

map so it must be injective. All we must prove is that this is surjective. Let v : C∞(X) → R be a

tangent vector in TxX and let v′ : C∞(U) → R be defined by v′(ϕ ◦ ι) = v(ϕ) for ϕ ∈ C∞(X). Now

we prove that this is a tangent vector in TxU which would mean that dιx is surjective. It suffices

to show that v′ is a derivation so for any ϕ, ψ ∈ C∞(X), we have

v′((ϕ ◦ ι)(ψ ◦ ι)) = v′((ϕψ) ◦ ι)
= v(ϕψ)

= ϕ(x)v(ψ) + ψ(x)v(ϕ)

= (ϕ(x) ◦ ι)v′(ψ ◦ ι) + (ψ ◦ ι)v′(ϕ ◦ ι).

(13)
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1. We have

dfx(v + w)(ϕ) = (v + w)(ϕ ◦ f)
= v(ϕ ◦ f) + w(ϕ ◦ f)
= dfx(v)(ϕ) + dfx(w)(ϕ)

and

dfx(cv)(ϕ) = (cv)(ϕ ◦ f)
= cv(ϕ ◦ f)
= cdfx(v)(ϕ)

so dfx is linear.

2. We have

d(g ◦ f)x(v)(ϕ) = v(ϕ ◦ (g ◦ f))
= v((ϕ ◦ g) ◦ f)
= dfx(v)(ϕ ◦ g)
= dgf(x)(dfx(v))(ϕ)

= dgf(x) ◦ dfx

so we are done.

(14) Suppose that there indeed exists a diffeomorphism f : Rm → Rn. This means that f ◦ f−1

and f−1 ◦ f are both identity. By the chain rule, we see that

dfx ◦ df−1
f(x) = df−1

f(x) ◦ dfx = I

so dfx is an isomorphism. However, this implies that Rm and Rn are isomorphic as vector spaces

since dfx is linear but this is clearly a contradiction.

(15)

(a) Let U1, U2 be open sets in Rn1 , Rn2 , respectively, and let g1 : U1 → Rm1 and g2 : U2 → Rm2 .

Now if g = g1×g2 : U1×U2 → Rm1 ×Rm2 is smooth, Then dg(u1,u2) = d(g1)u1 ×d(g2)u2 . Now
we can consider the parameterization ϕ : Ũ1 → X and ψ : Ũ1 → Y where Ũ1 and Ũ2 are open

sets in Rm1 and Rm2 so dg(u1,u2) = d(g1)u1 × d(g2)u2 gives a map between the tangent spaces.

(b) We have the following diagram

X × Y
f // X

U × V

ϕ×ψ

OO

g
// U

ϕ

OO

so g = ϕ−1◦f ◦(ϕ×ψ) is the projection map. This means that df(x,y) = dϕ0◦dg(0,0)◦d(ϕ×ψ)−1
0

is also the projection map.

(16)



7 2. Week 2

(a) We know that dγ
dt (t0)(ϕ) = dγt0(1)(ϕ) = 1(ϕ ◦ γ) for some ϕ ∈ C∞(X). Now we know that

the tangent vector 1 in R is the same as 1(ψ) = dψ
dt (t0) = dψt0(1) in Tt0R for any ψ ∈ C∞(R).

This means that

dγ

dt
(t0)(ϕ) = 1(ϕ ◦ γ)

= d(ϕ ◦ γ)t0(1)
= (dϕx0 ◦ dγt0)(1)
= dϕx0((γ

′
1(t0), . . . , γ

′
n(t0)))

so we can choose a ϕ such that dϕx0 is identity and we are done.

(b) To go from the velocity vectors to the tangent vectors, since the tangent vectors are directional

derivatives, we can just map the velocity vector to the directional derivative in the same

direction.

To go from the tangent vectors to the velocity vectors, we can take a tangent vector and

project it onto the manifold. Then the velocity vector of this curve must be the same as

the tangent vector so all of this means that the tangent space and set of velocity vectors are

isomorphic sets.

(17) We have proved the more general case in the next problem since in R, all local diffeo-
morphisms are injective. The reason the analogous result in R2 is false is because not all local

diffeomorphisms are injective.

(18) Since f is a local diffeomorphism it maps neighborhoods U → V diffeomorphically. Now

consider some open cover {Ui} such that
⋃k
i=1 Ui = X. This means that

f

(
k⋃
i=1

Ui

)
=

k⋃
i=1

f(Ui)

is a diffeomorphism from X to an open subset of Y since the f(Ui)’s are open subsets of Y . Now

the reason f has to be injective is so that we can take the inverse of the open subset of Y since if

we cannot do this, the map we have constructed is not a diffeomorphism.

(19) We must first prove that this is an immersion or that the derivative is injective. The

derivative at a is

dfa(h) = a

(
eh − e−h

2
,
eh + e−h

2

)
which is an injection. We can also similarly see that the actual immersion is also injective so all

that is left to do is prove that the immersion is proper. Now the image of this is just one side of

hyperbola which is a 1-manifold with f(t) as a parameterization. This means that all compact sets

on the hyperbola map to compact sets in R.

2 Week 2

(1) We know that if f : X → Y is a submersion with dimX = n and dimY = m, then there exists

local coordinates around x and y such that f(x1, ..., xn) = (x1, ..., xm) by the Local Submersion

Theorem. Since n > m, this is a projection so submersions are local projections. Therefore, since

projections map open sets to open sets, the same must be true submersions so we are done.

(2)



8 2. Week 2

(a) From the previous problem since f is a submersion, it must be an open map. Next, since X

is compact, since all continuous functions map compact spaces to compact spaces, we know

that the image of f is closed. This means that the image is either all of Y or empty since Y

is connected. If we assume both manifolds are nonempty, we are done.

(b) Now we know that X is compact and Euclidean space is connected so every submersion is

surjective. This means that f(X) = Rn but this is not true since X is compact and Rn is not.

This is a contradiction so we are done.

(3) We know that the directional derivative dfa : Rn → R at a point (a1, a2, a3) is just

dfa(h) = 2a1h1 + 2a2h2 − 2a3h3.

Clearly the only point where this is not surjective is (0, 0, 0). This means that 0 is the only critical

value and (0, 0, 0) is the only critical point. Therefore for all a ̸= 0, the set f−1(a) is a submanifold of

R3. We actually proved this in problem 7 of last week’s Pset. All these submanifolds are 2-manifolds

so for a, b ̸= 0, we know that f−1(a) and f−1(b) are diffeomorphic when a and b have the same sign.

(4) First since y is regular, by the Local Submersion Theorem, we know that f−1(y) is a

submanifold of dimension 0. This is because the dimensions of X and Y are the same. Additionally,

since the singleton y is compact, this must mean that f−1(y) is compact so f−1(y) must be finite.

Now we know that f is a local diffeomorphism so there exists neighborhoods xi ∈ V ′
i and y ∈ U ′

i

such that f : V ′
i → U ′

i is a diffeomorphism. Now we can shrink the V ′
i ’s such that they are disjoint

and we can do this since f−1(y) is finite. Now let U ′ =
⋂n
i=1 U

′
i and let V ′′

i = V ′
i ∩ f−1(U ′). Clearly

f : V ′′
i → U ′ is a diffeomorphism. Finally, let Z = f(X\

⋃
V ′′
i ) so Z must be closed in Y and it

doesn’t contain y. Therefore, the sets U = U ′\Z and Vi = V ′′
i ∩ f−1(U) are the sets we are looking

for.

(5) We know that complex polynomials are in the form

p(z) = cnz
n + cn−1z

n−1 + · · ·+ c0

so the derivative is

dpz0(w) = cnnw
n−1 + cn−1(n− 1)wn−1 + · · ·+ c1.

Since this is a finite polynomial, there is a finite number of points w where this is 0. These clearly

are the points where dpz0(w) is not surjective. This means that these roots are the critical points

and 0 is the unique critical value.

(6) LetM(n) be the set of n×n matrices so O(n) ⊆M(n). Consider the map f :M(n) →M(n)

defined by f(A) = AAT so f−1(I) = O(n). Therefore, since f is continuous and I is a closed

singleton, we know that O(n) must also be closed. Additionally, for Q ∈ O(n), we know that

||Qx|| = ||x|| so O(n) is bounded in a 1-ball. Putting all of this together, we have that O(n) is

closed and bounded so by Heine-Borel Theorem, we know that O(n) is compact.

(7) To find the tangent space of O(n), we can use the velocity vector definition of the tangent

space which we proved is equivalent to the derivation definition of the tangent space in the previous

problem set. Now let γ : R → O(n) be a curve in O(n) such that γ(0) = I. We also know that for

any t ∈ R, the matrix γ(t) must be an orthogonal matrix so

γ(t)Tγ(t) = I.

Differentiating both sides with respect to t at t = 0 gives us

(γ(0)T )′γ(0) + γ(0)Tγ′(0) = 0.
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Now γ(0) = I so

(γ(0)T )′I + Iγ′(0) = 0 =⇒ (γ′(0))T = −γ′(0).

Therefore, this means that TIO(n) ⊆ {A ∈ Rn2
: AT = −A}.

Now we must go the opposite way i.e. we must prove that every skew-symmetric matrix is in

the tangent space of O(n). For some A such that AT = −A, consider the curve γ(t) = etA. First,

this curve goes through I since γ(0) = e0A = I. Additionally, for any t ∈ R we know that

(etA)T etA = etA
T
etA = e−tAetA = I

so the curve is indeed in the orthogonal group. Finally,

(etA)′|t=0 = AetA|t=0 = A

so A ∈ TIO(n). This means that

{A ∈ Rn
2
: AT = −A} ⊆ TIO(n) =⇒ TIO(n) = {A ∈ Rn

2
: AT = −A}.

(8) Consider the map f :M(n) → R such that f(A) = det(A). This means that f−1(1) = SLn(R)
so we need to determine whether 1 is a regular value or not. The derivative is

dfA(B) = lim
s→0

f(A+ sB)− f(A)

s

= lim
s→0

det(A) + s det(A) Tr(A−1B) + p(A,B)− det(A)

s

= det(A) Tr(A−1B).

where p(A,B) is a polynomial in s excluding the constant and linear terms so lims→0 p(A,B)/s = 0.

Now we must determine if this is surjective when A ∈ SLn(R). For matrices that are in this set,

the determinant is 1 so dfA(B) = Tr(A−1B) which we can see is surjective.

To determine the tangent space, let γ : R → SLn(R) be a curve such that γ(0) = I. We know

that det(γ(t)) = 1. By Jacobi’s formula, we have

d

dt
det(γ(t)) = 0 =⇒ det(γ(t)) · Tr

(
γ(t)−1 · γ′(t)

)
= 0.

Plugging in t = 0 and using γ(0) = I, we get

Tr(γ′(t)) = 0

so the tangent space is all matrices that has a trace of 0.

(9) Let A be a m× n matrix in the form

A =

(
B C

D E

)
where B is a nonsingular r × r matrix. This means that the rank of A is at least r and the rank

exceeds r if some of the columns of

(
C

E

)
are linearly independent to the columns of

(
B

D

)
. We claim

that this never happens if E −DB−1C = 0. We can see this by multiplying A by the n× (n− r)

matrix (
B−1C

I

)
.
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We get (
B C

D E

)(
−B−1C

I

)
=

(
C −BB−1C

E −DB−1C

)
=

(
0

0

)
.

Now notice that when we multiply by this special matrix, we are taking the linear combination

of all the columns of

(
B

D

)
and one of the columns

(
C

E

)
but we are always getting the 0 vector.

Therefore, none of the columns of

(
C

E

)
are linearly independent to the columns of

(
B

D

)
so the

rank of A is r. Additionally, we can also easily see that the reverse is also true where if a A has

rank r, then E −DB−1C = 0.

Now let S(m,n) be the set of m × n matrices and let f : S(m,n)4 → S(m − r, n − r) be the

function defined as f(B,C,D,E) = E −DB−1C. Therefore, we must prove that the 0 matrix is a

regular value since f−1(0) is the set that is isomorphic to all rank-r matrices. The derivative is just

df(B0,C0,D0,E0)(B,C,D,E) = E − d(DB−1)(B0,C0,D0,E0)(B,C,D,E)C0 −D0B
−1
0 C

= E − (DB−1
0 −D0B

−1
0 BB−1

0 )C0 −D0B
−1
0 C

= E −DB−1
0 C0 +D0B

−1
0 BB−1

0 C0 −D0B
−1
0 C

which we can see is surjective. Now we can see that the dimension of the submanifold is just

4mn− (m− r)(n− r) = 3mn+ r(m+ n)− r2 .

(10) First, we choose local parameterizations ϕ : U → X and ψ : V → Y with ϕ(0) = x and

ψ(0) = f(x) such that the diagram

X
f // Y

U

ϕ

OO

g
// V

ψ

OO

commutes. In order to use the Inverse Function Theorem, we have decrease g. Since dg0 : Rn → Rm
is surjective, we can choose a basis of Rn such that it has the form(

Im 0
)

where the 0 denotes the m× (n−m) matrix of all zeros. Now, we define g̃ as

g̃(x) = g(x, z)− (0, z)

so g̃ maps an open set of Rm into Rm, and the matrix of dg̃0 is Im. Therefore by the Inverse

Function Theorem, g̃ is a local diffeomorphism of Rm at 0 so since ψ and g̃ are local diffeomorphism

at 0, we know that ψ ◦ g̃ is also one. Thus, ψ ◦ g̃ can be used as a local parameterization of Y

around f(x). In these coordinates, we see that F has the desired form.

(11) Since T −⋔ V , we know that im(dTx) + TyV = TyRn. Since V is a subspace of Rn, we have

TyV = V and TyRn = Rn. Additionally, since T is a linear map, we also see that dTxT so we get

the desired result. We can prove the reverse by using basically the same logic.

Next, we know that V −⋔ W is the same thing as saying ι −⋔ W where ι is the inclusion map.

This means that TxV + TxW = TxRn for some x ∈ V ∩W but V , W , and Rn are already linear

vector spaces so the tangent spaces are the same so V +W = Rn. The reverse is also easy to see

since we can basically use the same logic.

(12)
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(a) Since the xy-plane and z-axis are both subspaces of R3, they intersect transversally if they

span R3. This is because of the observation in the previous problem. However, it is easy to

see that this is true so the answer is Yes .

(b) Now these are two planes that are not parallel so they must span R3 meaning that they

intersect transversally and the answer is Yes .

(c) The plane spanned by (1, 0, 0) and (2, 1, 0) is just the xy-plane so with the y axis, this plane

cannot span R3. Therefore, the answer is No – the two sets do not intersect transversally.

(d) The spaces don’t necessarily intersect transversally because Rk × {0} and {0} × Rm could be

the x-axis and z-axis in R3. However, these two axis do not span R3 so they do not intersect

transversally. Therefore, this means that in general, the answer is No . However if k or m is

greater than n/2, the answer would be yes.

(e) We must see if V ×{0} and {(x, x)} span V ×V . For some (v1, v2) ∈ V ×V , where v1, v2 ∈ V ,

we can write it as (v1 − v2, 0) + (v2, v2) = (v1, v2). We see that (v1 − v2, 0) ∈ V × {0} and

(v2, v2) is in the diagonal so these two sets span V ×V . Therefore, they intersect transversally

so the answer is Yes . (We can use the result from the previous problem even though V is

not Euclidean space because it is isomorphic to Euclidean space.)

(f) We must check to see if the set of symmetric and skew matrices span the set of all n × n

matrices and then we can use the result from the previous problem since M(n) is isomorphic

to Rn2
. Now for some n× n matrix A, we can see that A+AT is symmetric since

(A+AT )T = AT + (AT )T = At +A = A+AT

and A−AT is skew symmetric since

(A−AT )T = AT − (AT )T = AT −A = −(A−AT ).

Therefore, we can write A as

A =
1

2
(A+AT ) +

1

2
(A−AT )

and this is a linear combination of a symmetric and skew symmetric matrix. This means that

these two set of matrices span M(n) so they intersect transversally. Therefore the answer is

Yes .

(13) First notice that X ∩ Z ⊆ X and X ∩ Z ⊆ Z so for some y ∈ X ∩ Z, we see that

Ty(X ∩ Z) ⊆ Ty(X) and Ty(X ∩ Z) ⊆ Ty(Z). Therefore,

Ty(X ∩ Z) ⊆ Ty(X) ∩ Ty(Z).

Next since X −⋔ Z, we know that

codim(X ∩ Z) = codimX + codimZ =⇒ dim(X ∩ Z) = dimX + dimZ − dimY.

This means that

dim(Ty(X ∩ Z)) = dim(Ty(X)) + dim(Ty(Z))− dimY.
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However we now that dim(U ∩ V ) = dimU + dimV − dim(U + V ) where U and V are two vector

subspaces. Since X −⋔ Z, we know that

dim(Ty(X) + Ty(Z)) = dim(Ty(Y )) = dim(Y ).

Therefore

dim(Ty(X) ∩ Ty(Z)) = dim(Ty(X)) + dim(Ty(Z))− dim(Ty(X) + Ty(Z))

= dim(Ty(X)) + dim(Ty(Z))− dimY.

Since dim(Ty(X ∩Z)) = dim(Ty(X))+dim(Ty(Z))−dimY and both sets have the same dimension,

Ty(X ∩ Z) = TyX ∩ TyZ.

(14) If f −⋔ g−1(W ) then

im(dfx) + Ty(g
−1(W )) = Ty(Y ).

Applying dgy to both sides gives us

dgy(im(dfx) + Ty(g
−1(W ))) = dgy(Ty(Y )) = im(dgy).

Simplifying the left hand side gives us

dgy(im(dfx)) + dgy(Ty(g
−1(W ))) = im(d(g ◦ f)x) + dgy(Ty(g

−1(W ))) = im(dgy).

Since g −⋔W , we know that im(dgy) + Tz(W ) = Tz(Z) so adding Tz(W ) to both sides gives us

im(d(g ◦ f)x) + dgy(Ty(g
−1(W ))) + Tz(W ) = Tz(Z).

Notice that dgy(Ty(g
−1(W ))) ⊆ Tz(W ) so g ◦ f −⋔W .

For the reverse, we assume g ◦ f −⋔ W and g −⋔ W . The latter implies that Ty(g
−1(W )) =

im((dgy)
−1). Now let w ∈ Ty(Y ). Since dgy(w) ∈ Tz(Z) and g ◦ f −⋔W , there exists v ∈ Tx(X) and

u ∈ Tz(W ) such that

dgy(w) = dgy(dfx(v)) + u

and w − dfx(v) ∈ im((dgy)
−1) = Ty(g

−1(W )). Therefore, we see that w = dfx(v) + u′ where

u′ ∈ Ty(g
−1(W )) which means that

Ty(Y ) = im(dfx) + Ty(g
−1(W ))

so f −⋔ g−1(W ) and we are done.

(15) First we see that f ∼ f since the homotopy between f and f is the identity map: H(x, t) =

f(x) for any t ∈ [0, 1]. Next, homotopy is symmetric since if f ∼ g where the homotopy between the

two functions is H, we can define a homotopy between g and f as H ′(x, t) = H(x, 1− t). Finally

to prove that homotopy is transitive, let f1 ∼ f2 and f2 ∼ f3. To go from f1tof3, we go from f1 to

f2 in the period [0, 1/2] and from f2 to f3 in the period [1/2, 1].

(16) Let f : Y → X. Notice that f = Id ◦f but the identity map is homotopic to the constant

map which means that this is also the case for Id ◦f . Now all maps from Y to X are homotopic to

the constant map so they must all be homotopic to each other.

(17) Consider S2n−1. We can think of this as a subset of the complex n-tuple z = (z1, z2, ..., zn) ∈
Cn with modulus 1 i.e. |z| =

√
|z1|2 + |z2|2 + · · ·+ |zn|2 = 1. Now consider the homotopy,

H(z, t) = eiπtz = (eiπtz1, e
iπtz2, ..., e

iπtzn).
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This is clearly smooth and H(z, 0) = z and H(z, 1) = −z.
(18) First, let A be compact. We know that for each x and y in Rn, there exists an M such that

|g(x)− g(y)| < M |x− y|. This is because the distance between two points can only grow by a finite

amount when we apply a smooth function since g(A) is compact. Now let Mmax be maximum M

over all x and y. Therefore if we want the sum of the volume of the boxes that cover g(A) to be

≤ ε, we take a set of boxes that cover A with total volume ε/Mmax (which we can do since A has

measure 0) and apply g onto the boxes. Therefore, we have shown that g(A) has measure 0. Now

every measure 0 set A can be decomposed into a finite number of compact sets so we are done.

(19) Let g : Z → Q be a bijection. We define f : R → R to be any smooth function such

that f(x) = g(m) for all m ∈ Z and x ∈ (m − 1/3,m + 1/3). The critical values of f are dense.

Essentially, the function is flat on these intervals so g(m) is a critical value. However, g(m) goes

through all the rationals so the set of critical values are the rationals meaning that this set is dense.

(20) We start with n = 1. If the matrix is A =
(
0
)
, the determinant is det(A) = x so it has no

critical values so the determinant is a Morse function. Now notice that for all n > 1, the zero matrix

will always be a critical point of the determinant. When n = 2, this matrix is the only critical point

since for A =

(
x1 x2
x3 x4

)
, the determinant is det(A) = x1x4 − x2x3. The Hessian matrix evaluated

at this critical point is

H =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


which is nonsingular meaning that it is invertible. Therefore all critical points are nondegenerate

so the determinant is a Morse function. Now for n > 2, the Hessian matrix evaluated at the zero

matrix becomes the zero matrix which is invertible. This means that the zero matrix is a critical

point but degenerate so the determinant is not a Morse function.

3 Week 3

(1) Consider the function that maps the ∂Hn onto itself through the following composition of

functions

∂Hn ϕ−→ ∂X
f−→ ∂Y

ψ−1

−−→ ∂Hn

where ϕ and ψ are parameterizations of X and Y respectively. Since the whole function is diffeo-

morphic and so are ϕ and ψ−1, this implies that f maps ∂X to ∂Y diffeomorphically.

(2) If this was a manifold, then ∂Hn would map diffeomorphically to square boundary but this

is not possible to do without creating corners. These corners make the map not diffeomorphic since

derivatives of all orders does not exists at these corners. Therefore, [0, 1]× [0, 1] is not a manifold

with boundary.

(3) Notice that when a > 1, the whole sphere is contained in solid hyperboloid so we can easily

see that the intersection is a manifold. However, when −1 ≤ a ≤ 1, the hyperboloid intersects

the sphere but these intersection points are not going to be smooth i.e. we won’t be able to take

any number of derivatives at these points. Therefore, the boundary of the intersection won’t be

diffeomorphic to ∂Hn so the intersection is not a manifold. Finally, when a < −1, the intersection

becomes the empty set which is a manifold with boundary.

(4) No matter how we twist the rectangle, after gluing the two ends together, it is a loop so a

neighborhood on the interior of strip can be diffeomorphically mapped to H2\∂H2. Additionally,
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we can see that the boundary of a Möbius strip is a loop or in other words, it’s equivalent to a circle.

Therefore, the boundary can be mapped to ∂Hn.

(5)

(a) Proving ∂X is closed is the same thing as proving the X◦ is open. Let ϕ : U → V be a

parameterization of X. For every point x in the X◦, we know there exists a neighborhood of

ϕ−1(x) in Hn that doesn’t contain ∂Hn. Let this neighborhood be U . This means that ϕ(U)

is a neighborhood of x that doesn’t contain ∂X so the X◦ is open.

To see that ∂X is compact, we have already proven that ∂X is closed. Additionally, since X

is compact, it is bounded so ∂X must be bounded.

(b) Notice that ∂X can be closed and bounded but this doesn’t necessarily mean that X is

bounded. For example we can have a manifold in R3 bounded by a circle but it can extend

infinitely in the z direction. Therefore X doesn’t need to be compact if ∂X is.

(6) We can pick a boundary point in ∂Bn and just map everything in Bn to this point. Therefore,

this map is smooth and the boundary point is a fixed point of the map.

(7) A simple rotation around the center of the torus shows us that there exists smooth functions

on the solid torus that don’t have any fixed point. The problem happens when we construct the

retraction g. We defined g(x) as the point where the ray starting at f(x) through x hits the

boundary of Bn. However, in the case of the torus, the ray hits the boundary of the torus many

times and this lack of uniqueness breaks the proof.

(8) Now we know that any smooth function can be arbitrarily well-approximated by polynomials

which are smooth. Therefore, we can approximate a continuous function as smooth function made

up of polynomials. We know that there exists a fixed point in the smooth case so this proves that

there exists a fixed point in the continuous case.

(9) We know that the n × n matrix is the same as a the linear transformation T : Rn → Rn.
Now consider the map T ′ : Sn → Sn that is defined by T ′(x) = T (x)/||T (x)||. We know that Sn is

homeomorphic to Bn−1 so by Brouwer’s fixed point theorem, there exists a x0 such that T ′(x0) = x0.

In other words T (x0)/||T (x0)|| = x0 =⇒ T (x0) = ||T (x0)||x0. Therefore x0 is an eigenvector and

||T (x0)|| is the nonnegative eigenvalue.

(10) Consider the distance function from w to any point on Y . This function is clearly continuous

and any continuous function on a compact set attains a minimum. Therefore, there exists a closest

point y.

Now we must prove that (w − y) · t = 0 for every t ∈ Ty(Y ). This is the same as proving that if

there exists a t ∈ Ty′(Y ) such that (w − y′) · t ̸= 0, then y′ is not the closest point to w. Let γ be

the curve on Y that passes through y′ and is in the same plane as t i.e. t will be tangent to γ. We

now shift our perspective to this plane. We know that if there exists a tangent vector t such that

(w− y′) · t ̸= 0, then the circle of radius |w− y′| is not tangent to γ since if this was the case, then t

would be orthogonal to the circle meaning that it would be orthogonal to w − y′ which it clearly is

not. This means that there exists some ε such that if we shrink the radius of the circle by ε, then

the circle still intersects γ. The intersection points will be closer to w than y′ which proves that y′

isn’t the closes point to w.

(11) We previously showed that for any smooth function f : X → Rn and almost every a in some

open ball, the function fa(x) = f(x) + a is transversal to any submanifold of Rn including Y. If we

pick f = ι, the inclusion map, we know that (ι(x) + a) −⋔ Y =⇒ ι(x+ a) −⋔ Y =⇒ (X + a) −⋔ Y

for almost every a in some open ball. Therefore, for each open ball, there exists a set of a in the
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open ball with measure zero where (X + a) −̸⋔ Y . Now Rn can be formed by a union of countable

balls. Each ball has its own measure zero set where (X + a) −̸⋔ Y so taking the union of these gives

us the set of all a ∈ Rn where (X + a) −̸⋔ Y and this union must have measure zero.

(12) Notice the dimension constraint means that X and Z are not transveral when they’re

intersecting. Next since transversability is generic (which we proved this week), we can deform X

by an arbitrarily small amount such that X −⋔ Z. However this means that after this deformation,

X will not intersect Z.

Next we prove that the deformation can be kept constant outside some open neighborhood of

X ∩ Z. Since X and Z are both compact, their intersection is also compact. Therefore an open

neighborhood of X ∩ Z contains points in X outside X ∩ Z. In other words, if U is the open

neighborhood, then X ′ = (U ∩X)\(X ∩ Z) is not empty. Now we deform U ∩X so that it doesn’t

intersect Z. If we keep the rest of X constant, we are not done yet since this deformation might not

be smooth. However, we can move around points in X ′ to make sure this is true. By the nature of

how X ′ is define, this will still keep X and Z not intersecting.

(13) We first parametrize N(X). Since the dimension of N(X) is 2, we parametrize with two

parameters: t and k. Notice that we can parametrize the parabola as x = (t, t2). This means that

the tangent vector is (1, 2t) so all normal vectors for x are v = k(−2t, 1). Therefore

h(x, v) = h(t, k) = (t, t2) + (−2kt, k) = ((1− 2k)t, t2 + k).

This means that the Jacobian is

J =

(
1− 2k −2t

2t 1

)
.

We want this not to be surjective so since this is a square matrix, we set the determinant to 0:

1− 2k + 4t2 = 0 =⇒ k =
4t2 + 1

2

so (t, (4t2 + 1)/2) are the critical points. Plugging this into h gives us

h

(
t,
4t2 + 1

2

)
=

(
−4t3, 3t2 +

1

2

)
and these are the critical values which are the focal points.

(14) We have proved this in Proposition 3.6 when Y is Euclidean space i.e. Y = Rn. Now all we

are doing in the normal bundle to Z in Y is that we’re approximating Y as Euclidean space with

the tangent space Tz(Y ). Therefore, locally, notice that N(Z;Y ) is the same as N(Z) in RdimY .

Proposition 3.6, this is why N(Z;Y ) is a manifold with dimension dimY .

(15) First notice that Tp(Sn) is just the n-plane orthogonal to the line from the origin to p.

Therefore Tp(Sn−1) is a (n − 1)-plane orthogonal to the line from the origin to p and is in the

(x1, ..., xn−1)-plane. Next, Tp(Sn) is orthogonal to the (x1, ..., xn)-plane since the line from the

origin to p is in the (x1, ..., xn)-plane. Therefore the vectors orthogonal to Tp(Sn−1) in Tp(Sn) are
orthogonal to the (x1, ..., xn−1)-plane which means that they are spanned by (0, ..., 0, 1).

(16) Let Ũ be a open set of Y and let U = Z ∩ Ũ . Therefore, there exists a parametrization

ϕ : U × RcodimZ → N(Z;Y ). Notice that σ ◦ ϕ : U × RcodimZ → U sends (u, v) 7→ u so it is a

submersion. Therefore, it follows that σ is also a submersion.

(17) We can define a parametrization for N(Z;Y ) essentially in the same way as Proposition 3.6

but instead of considering RM , we consider Y and Tz(Y ). Therefore when we plug in the values of

v where dϕTy v = 0, we get the parametrization of the embedded Z proving that it is a submanifold.
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(18) BothN(Z;Y ) and Y are manifolds of the same dimension. Therefore there exists parametriza-

tions ϕ1 : U1 → UN(Z;Y )(Z) and ϕ2 : U2 → UY (Z) where UX(W ) denotes an open neighborhood

of W in X. Next, let ψ : U1 → U2 be a diffeomorphism. (Open neighborhoods in euclidean space

are diffeomorphic to each other since they are all diffeomorphic to the open ball.) All of this means

that ϕ2 ◦ ψ ◦ ϕ−1
1 is the diffeomorphism from an open neighborhood of Z in N(Z;Y ) to an open

neighborhood of Z in Y .

(19) These global functions can be like dot products. Therefore gi(y) = 0 can mean that tangent

vectors at y are orthogonal to all vectors in direction i in an n-dimensional space. Therefore the

condition

Z = {y ∈ U : g1(y) = · · · = gn(y) = 0}

means that tangent vectors of Z are orthogonal to vectors in all directions soN(Z;Y ) is diffeomorphic

to Z × Rn. We can use a similar logic to prove the reverse. If Z has to be orthogonal to vectors in

all directions, the above condition must hold.

4 Week 4

(1) Let p(z) = z7 + cos(|z|2)(1 + 93z4) and let

pt(z) = tp(z) + (1− t)z7 = z7 + t(cos(|z|2)(1 + 93z4))

be a homotopy. If W is a closed ball large enough, we can see that pt(z) is never zero on ∂W . This

is because
pt(z)

z7
= 1 + t

(
cos(|z|2)(1 + 93z4)

z7

)
and as z → ∞, the numerator of the expression in the parenthesis grows a lot slower than the

denominator so the expression in the parenthesis goes to 0. This means that pt
|pt| : ∂W → S1 is

defined for all t so deg2(
p
|p|) = deg2(

p0
|p0|). However, p0 = z7 which has a mod 2 degree of 1 so p

must have a zero in W ◦.

(2) Let f1 be any function that is homotopic to f such that f1
−⋔ g−1(W ). (If f −⋔ g−1(W ), f1

could just be f). We know that I2(f1, g
−1(W )) is just the number of points in f−1

1 (g−1(W )) =

(f−1
1 ◦ g−1)(W ). We also know that g ◦ f1 −⋔ W so I2(g ◦ f1,W ) is the number of points in

(g ◦ f1)−1(W ) = (f−1
1 ◦ g−1)(W ) which proves our claim

(3) Let i : Y → Y be the identity map. By the definition of contractible, this map is homotopic

to the constant map which we call c. Therefore, we have

I2(f, Z) = I2(f ◦ i, Z) = I2(i, f
−1(Z)) = I2(c, f

−1)(Z) = I2(f ◦ c, Z) = I2(c, Z).

However, we can always make the constant function not intersect Z by choosing the necessary

constant such that this happens so I2(c, Z) = 0 meaning that we are done.

(4) Let X be manifold that is contractible and compact. Let i : X → X be the identity map

and let Z = {p} be a closed submanifold of X. By what we proved in the previous problem, we

know that I2(i, Z) = 0. However, this is impossible since i−1(Z) clearly contains 1 which is not

congruent to 0 modulo 2 so we have our desired contradiction.

(5) We claim that S1 is not contractible. We know that S1 is compact so if S1 is contractible, it

must be a point because of the previous problem but we know this isn’t true. Therefore the identity

map isn’t homotopic to a constant map which proves that S1 is not simply connected.



17 4. Week 4

(6) Let f̃ be a map homotopic to f such that f̃ −⋔ Z. The regular values are f̃(X) ∩ Z so by

Sard’s Theorem, there exists a p ̸∈ f(X) ∩ Z. Now let g be the sterographic projection from Sn
to Rn where p is where the rays start from. By problem 3, we have I2(g ◦ f, Z) = 0. Notice that

p needs to be outside of f(X) ∩ Z such that (g ◦ f)−1(Z) and henceforth I2(g ◦ f, Z) is defined.

Therefore I2(f, Z) = 0.

(7) In this week’s notes, we saw that two circles in T2 have intersection 1 mod 2. However in S2,
two circles have intersection 0 mod 2 since circles on S2 are contractible so we can shrink the circles

until they don’t intersect. Because of this mismatch, we see that S2 cannot be diffeomorphic to T2.

(8) Since deg2(f) ̸= 0, we know that I2(f, {y}) ̸= 0 for all y ∈ Y . This means that f(X) contains

y for every y ∈ Y so f(X) = Y . Therefore, we have proved that f is surjective.

(9) For the forward direction, we can let W be the manifold that X traces as it gets deformed

into Z. Therefore ∂W is the union of how X looked in the beginning and how it looks in the end

proving that W is a cobordism of X and Z. However, a counterexample for the converse is Figure

5. Let X be the top circle and Z be the bottom circles. Figure 5 clearly shows a manifold that

is a cobordism of X and Z but it is impossible to deform a circle into two circles so X cannot be

deformed into Z.

(10) Since X and Z are cobordant, there exists a manifold W ⊆ Y × I such that ∂W =

(X × {0}) ∪ (Z × {1}). Now let f be the projection from Y × I to Y restricted to W . By the

Boundary Theorem, we know that I2(∂f,C) = 0. Next, notice that ∂f is a disjoint union of the

inclusions ιX : X × {0} → X and ιZ : Z × {1} → Z. Therefore,

0 = I2(∂f,C) = I2(ιX , C) + I2(ιY , C) = I2(X,C) + I2(Z,C)

which means that I2(X,C) = I2(Z,C).

(11) In the original statement of Borsuk-Ulam, we considered a function f : Sn → Rn+1 where

f(−x) = −f(x) and we concluded thatW2(f, 0) = 1. Now f this is not too different from a function

g : Sn → Sn since we can just defined g as g = f/||f || so g(−x) = −g(x) still holds. Finally, we

have W2(f, 0) = deg2(f/||f ||) = deg2(g) which is how we end up with this new statement.

(12) Assume there exists no line through the origin where p1, ..., pn vanish. This means that the

kernel of the function f : Rn+1 → Rn defined by

f(x) = (p1(x), ..., pn(x))

doesn’t contain a line through the origin. Therefore, we can find an n-sphere that doesn’t intersect

the kernel. This means that there exists a map g from the n-sphere to Rn+1\{0} which we can

define as

g(x) = (p1(x), ..., pn(x), 0).

Notice that im(g) doesn’t contain 0 since the domain never intersects ker(f) so g(x) ̸= 0 on the

n-sphere. Additionally, we see that g satisfies the property g(−x) = −g(x) since p1, ..., pn are odd

functions. Therefore, by Corollary 3.3, the image of g intersects every line containing the origin

but this is clearly not true since im(g) is just a plane. All the lines through the origin not in this

plane clearly don’t intersect the plane (since the plane doesn’t contain the origin) and this is a

contradiction. Therefore our original assumption is false and there exists a line in Rn+1 through

the origin where p1, ..., pn vanish.

(13) For every x ∈ Sn−1, define h̃(x) be the oriented hyperplane throught the origin where its

unit normal vector is x. An oriented hyperplane is a hyperplane with the additional information of

which side of the hyperplane is positive. We call the side containing x the positive side so h̃(−x) is
the same hyerplane as h̃(x) but with opposite orientation.
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Now by the intermediate value theorem, for every x ∈ Sn−1, we can translate h(x) such that

the shifted hyperplane splits C1 into two pieces of equal volume. Let P (x) be the point the origin

gets shifted to after this translation. Additionally, for every x ∈ Sn−1, let h(x) be the oriented

hyperplane orthogonal to x that passes through P (x). This means that h(x) splits C1 in half for

every x ∈ Sn−1. Additionally, we still have the property that h(−x) is the same hyperplane as h(x)

but with opposite orientation.

We are now ready to define f : Sn−1 → Rn−1: let f(x) be the (n − 1)-tuple where its ith

component is the volume of the part of Ci+1 on the positive side of h(x). By the Borsuk-Ulam

theorem, there exists an x ∈ Sn−1 such that f(x) = f(−x). However, notice that the ith component

of f(−x) is the volume of Ci+1 on the negative side of h(x) since h(x) and h(−x) are the same

hyperplane but with opposite orientation. This means that f(x) = f(−x) implies that h(x) has

split all C1, ..., Cn into pieces of equal volume so we are done.

(14) Let di : Sn−1 → R be defined as

di(x) = inf{|x− y| : y ∈ Ci}.

Basically, di(x) tells us the distance from x to the closest point in Ci. The reason we need to use

an infimum is because Ci could be open. Now we define f : Sn−1 → Rn−1 as

f(x) = (d1(x), ..., dn−1(x)).

By the Borsuk-Ulam Theorem, there exists an x ∈ Sn−1 such that f(x) = f(−x). If x ∈ Cn, then

f(x) and f(−x) have no 0’s meaning that x,−x ∈ Cn. If x ∈ Ci for some i ̸= n, the ith component

of f(x) and f(−x) is 0. If Ci is closed, then x,−x ∈ Ci so we would be done. If not, then −x ∈ C̄i or

the closure of Ci. This means that there exists some ε such that B(x, ε) ⊆ Ci and B(−x, ε)∩Ci ̸= ∅.

Now if we pick a y ∈ B(−x, ε) ∩ Ci, then −y ∈ B(x, ε) ⊆ Ci so y,−y ∈ Ci and we are done.

(15)

(a) Let j be the total number of jewels and let the string have length j. Instead of each jewel

being a point on the string, we consider it as a part of the string of length 1. Therefore, we

have divided the string up into j regions representing the j jewels.

Now we define a continuous function function f : Sn → Rn. Let x = (x1, ..., xn+1) be a

point on Sn. We cut the string n times such that the regions between the cuts have lengths

|x1|, ..., |xn+1|. If xi is positive, then the ith region goes to the first person and if not, this

region goes to the second person. This means that in −x we cut in the same places but we

reverse who gets what region. Let f(x) be the total length of each type of jewel the first person

gets. By the Borsuk-Ulam Theorem, there exists a point x ∈ Sn such that f(x) = f(−x).
This condition says that even if we reverse who gets what region, the total length of each

type of jewel the first person gets stays the same. This means that the cutting and division

associated with x is fair. Additionally, since the number of jewels of each type is even, total

length of each type of jewel each person gets will be an integer.

(b) Let’s say there are 2 types of jewels: red and blue and the are arranged on the string as

“rrrbbr.” There is no way splitting this evenly in 2 − 1 = 1 cut. However we can split this

evenly with two cuts: “r|rrb|br.”

(16)
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(a) Notice that we can bend a sphere to form the Alexander horned sphere. First we claim that

a torus with a radial slice taken out and ends sealed is homeomorphic to a sphere. This is

because we can deform a sphere into a cylinder and then bend it to form this specific version

of a torus. Now the Alexander horned sphere is just a bunch of these pseudo tori glued to each

other. Notice that the ends never meet so se can keep deforming the ends of the pseudo tori

to form more pseudo tori which proves that the Alexander horned sphere is homeomorphic to

a normal sphere.

(b) Consider the loop around the top of the Alexander horned sphere where the mess is going

on. No matter what we do, we cannot deform this loop into the constant loop so they aren’t

homotopic. This means that R3\B is not simply connected so we are done.

5 Week 5

(1) Because of the Jordan-Brouwer Separation Theorem, we know that the compact manifold of

dimension n embedded in Rn+1 splits Rn into an “inside” and “outside.” Therefore we can choose

one of these as positive orientation and the other as negative orientation.

(2) First we claim that

TxX ⊕ TxZ = (−1)(dimX)(dimZ)(TxZ ⊕ TxX)

for all x ∈ X ∩ Z. First TxX and TxZ are isomorphic to RdimX and RdimZ , respectively, (since

dim(TxX) = dimX and dim(TxZ) = dimZ) so we can just prove the claim for these Euclidean

spaces. Let B1 be an ordered basis of RdimX and let B2 be an ordered basis of RdimZ . This

means that since X −⋔ Z and dimX + dimZ = dimY , we have that B1 ∪ B2 is an ordered basis

of RdimX ⊕ RdimZ and B2 ∪ B1 is an ordered basis of RdimZ ⊕ RdimX so both of these are ordered

bases of RdimY . Now let T be the unique map that takes B1 ∪B2 to B2 ∪B1 while preserving order.

This means that we must prove the sign of det(T ) is (−1)(dimX)(dimZ).

To make things easier, we convert the basis vectors that make up B1 and B2 to standard basis

vectors. First let B = {e1, ..., edimX+dimZ} be the standard ordered basis of RdimX+dimZ . Now let

T1 be order preserving map from B1 ∪B2 to B and let T2 be the map such that T = T−1
1 ◦T2 ◦T1 so

det(T ) = det(T−1
1 ) det(T2) det(T1) =

1

det(T1)
det(T2) det(T1) = det(T2)

so we only need to worry about the sign of det(T2).

Notice that T2 is map that switches the order of the first dimX with the last dimZ vectors of

B. This means that in matrix form, T2 is(
0 IdimX

IdimZ 0

)
where the 0 represents how many ever 0’s needed to make the matrix square. In the first row, there

is a 1 in the (dimZ + 1)th spot so

det(T2) = det

(
0 IdimX

IdimZ 0

)
= (−1)dimZ det

(
0 IdimX−1

IdimZ 0

)
.

We can do this dimX − 1 times to get

det(T2) = (−1)(dimX−1)(dimZ) det

(
0 I1

IdimZ 0

)
= (−1)(dimX)(dimZ)
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so we are done proving the claim. Since the orientation of X ∩ Z is the orientation of TxX ⊕ TxZ,

we have

X ∩ Z = (−1)(dimX)(dimZ)Z ∩X.

(3) The

(4) We will first prove that (a) and (b) are equivalent. First if Z is orientable, then we can

smoothly choose the orientations of the tangent spaces of points in Z. For each point in Z, we

can assign the direction of the normal vector at this point to the orientation of the tangent space.

This works since there only two ways the normal vector can point in because codimY Z = 1. Now

since the orientation of the tangent spaces changes smoothly, this means that the normal vector

also smoothly varies.

For the reverse, if the normal vector smoothly varies we can again assign the direction the normal

vector is pointing in to the orientation of the tangent space at that point so this orientation will

smoothly change. Therefore, we can smoothly assign orientations to the tangent spaces of Z so by

definition, we know that Z is orientable.

(5) If the Möbius strip was orientable, then the normal vector would smoothly vary but this is

clearly not true since when we move in a loop and come back to our starting position, the normal

vector switches direction. Therefore by the previous problem, the Möbius strip is nonorientable.

(6) Assume X × Y is orientable which means that we can assign orientations to the tangent

spaces of X × Y smoothly. However we know that

T(x,y)(X × Y ) = TxX × TyY

so we can assign the orientation of TxX as whatever the orientation of T(x,y)(X × Y ) and this

assignment of orientations will be smooth. Therefore, this means that X is orientable which is a

contradiction so X × Y cannot be orientable.

(8)

(a) Notice that the degree of the reflection map of Sn is −1. Next, it is also easy to see that

deg(f ◦ g) = deg(f) deg(g) when f : X → Y and g : Y → Z. This is because

deg(f ◦ g) =
∑

x∈(f◦g)−1(z)

±1

=
∑

x∈f−1(y)

∑
y∈g−1(z)

±1

=

 ∑
x∈f−1(y)

±1

 ∑
y∈g−1(z)

±1


= deg(f) deg(g).

Now we can notice that the antipodal map is a composition of n+ 1 reflections since we need

to reflect all n+ 1 coordinates so its degree is (−1)n+1.

(b) The antipodal map is homotopic to the identity when its degree is 1 which is when n is odd.

(9) Let z = x+ iy, for x, y ∈ R, so our equation becomes

(x+ iy)2 = e−(x2+y2) =⇒ x2 − y2 + 2xyi = e−(x2+y2).
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This implies that xy = 0 so at least one of x and y is 0. Clearly, both cannot be 0 so one or the

other is 0. Let us first consider x = 0. We have

−y2 = e−y
2
.

This can never happen for y ∈ R since the left is always negative and the right is always positive.

When y = 0, we have

x2 = e−x
2
.

This clearly has a solution (which can easily be seen by graphing these functions) so we are done.

(10) The degree of a map is homotopy invariant so if two maps are homotopic, then they have

the same degree. For the reverse, let f, g : S1 → S1 be two functions. We can lift these to the maps

f̃ , g̃ : R → R so since the degrees are the same, we have

f̃(2π)− f̃(0)

2π
=
g̃(2π)− g̃(0)

2π
=⇒ f̃(2π)− g̃(2π) = f̃(0)− g̃(0).

This means that we can construct a straight line homotopy between f̃ and g̃ so f and g are

homotopic.

(11) Let g be a function with deg(g) = 0 that is constant on the circle of radius 1/2. By the

previous exercise, we know that g is homotopic to f so we can extend f to the annulus between

circles of radius 1/2 and 1. Now we f is constant on the inner circle so we also extend f to be

constant in the inner circle’s interior so we are done.

(12) Let ∆xy = {(x, y, x, y) : x ∈ X, y ∈ Y } be the diagonal. Additionally, let yi be an

intersection point of ∆y with itself. This means that I(∆xyi ,∆xyi) = I(∆x,∆x). Now if we do this

for all yi, we get

I(∆xy,∆xy) = I(∆x,∆x) · I(∆y,∆y) =⇒ χ(X × Y ) = χ(X)χ(Y ).

6 Week 6

(1) First we consider the case when A is orientation preserving. Now every linear isomorphism

can be described by where the standard basis vectors go to. Since A is orientation preserving, we

see that {A(e1), ..., A(en)} is a positively ordered basis of Rn. Now we can define At as the linear

isomorphism defined by the following positively ordered basis:

{e1 + (A(e1)− e1)t, ..., en + (A(en)− en)t}.

This works since the orientation doesn’t change over this homotopy to the vectors as they are

transformed over t don’t cross over each other.

Now when A doesn’t preserve, then let Ã be A composed with the reflection of the first coordinate.

This means that Ã preserves orientation so it is homotopic through isomorphic maps to the identity

map. Therefore, we see that A is homotopic to (−x1, x2, ..., xn).
(2) The statement of this problem is saying that there doesn’t exist smooth functions f, g :

S2 × S2 → R such that

f(x1, x2) = g(x1, x2) = 0

if and only if x1 = x2. However, this is clearly true if f and g are both distance functions on S2
(which are smooth) so either the problem statement is wrong or the definition of globally definable

is wrong.
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We shall assume the problem statement is correct and we use the following definition of global

definability:

Definition. A set Z is globally definable if there exists a neighborhood Z ⊂ U and smooth

submersion f : U → R2 such that Z = f−1(z) for some z ∈ R2.

Notice that the normal bundle of a point in R2 is just the set of all vectors in R2. Now we can

pull this back to the normal bundle of ∆:

N(∆,S2 × S2) ∼= N(∆, U) ∼= f∗N(z,R2)

where the latter is the trivial plane bundle over ∆. However, this clearly isn’t true so ∆ is not

globally definable.

(3) Consider the map f(x) = 1/2x on Rk. In matrix form, this is the k × k matrix1/2 · · · 0
...

. . .
...

0 · · · 1/2

 .

This happens to be the same matrix for dfx so det(dfx − I) = (−1/2)k so L0(f) = (−1)k.

Now if we use the same construction as S2, we will still have fixed points at the north and

south poles. However, the source at the north pole has a local Lefschetz number of LN (f) = (−1)n

because of our reasoning from before. However LS(f) still remains 1 so L(f) = 1 + (−1)n.

(4) Notice this map is not Lefschetz so we must use the second definition of the local Lefschetz

number. We can let B be the circle of radius 1 centered at the origin. We have

F (z) =
z + zm − z

|z + zm − z|
=

zm

|zm|
= ei(mθ)

where z = eiθ. This means that we can define the isomorphic function F̃ : R2 → R2 as

F (r, θ) = (1,mθ).

This wraps around the original circle m times so L0(f) = m.

(5) Let z be a fixed point of z. The derivative is

dfz(h) = lim
t→0

f(z + th)− f(z)

t

= lim
t→0

z + th+ (z + th)m + c− (z + zm + c)

t

= lim
t→0

th+mzm−1th+
(
m
2

)
zm−2(th)2 + · · ·

t

= h+mzm−1th = h(1 +mzm−1)

so fixed points satisfy h = h(1 +mzm−1). However, since m > 0, we know that 1 +mzm−1 ̸= 0 so

the derivative doesn’t have any nonzero fixed points. Therefore, this proves that f is Lefschetz.

Now the fixed points of f satisfy zm = −c so they are the mth roots of unity scaled by m
√
−c.

When m = 1, the only fixed point is −c so its Lefschetz number is L−c(f) = 1 since f = 2z + c

which is a source at −c. When m > 1, to find the local Lefschetz numbers of these fixed points, we
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must determine the sign of det(dfz − I). Notice that dfz − I = hmzm−1 so this map rotates and

scales so the corresponding matrix is of the form

λ

(
cos θ − sin θ

sin θ cos θ

)
Therefore, we know that Lz(f) = 1 so this means that for all m, the Lefschetz number is Lz(f) = 1.

(6) This map is not Lefschetz so we must use the second definition of the local Lefschetz number.

Let B be the circle of radius 1 centered at the origin. We have

F (z) =
z + z̄m − z

|z + z̄m − z|
=

z̄m

|z̄m|
= ei(−mθ)

where z = eiθ. This means that we can define the isomorphic function F̃ : R2 → R2 as

F (x, y) = (cos(−mθ), sin(−mθ)) = (cos(mθ),− sin(mθ)).

This wraps around the original circle m times in the negative direction so L0(f) = −m.

(7) Consider the function f : O(n) → O(n) defined by f(Q) = AQ where A ∈ O(n) and A ̸= I.

This works since (AQ)TAQ = QTATAQ = QTQ = I. Now this map doesn’t have any fixed points

since if Q was a fixed point, then Q = AQ but Q is invertible (since it’s orthogonal) so A = I which

is a contradiction. This means that L(f) = 0. Finally, notice that f is homotopic to the identity

map by the straight line homotopy:

ft = Q+ (AQ−Q)t.

Therefore, we know that L(Id) = χ(O(n)) = 0.

(8) The general method is to define the function f : X → X as the multiplication of an element

by another element (that isn’t identity) like in the case of the orthogonal group. This works since

group multiplication is closed. Now we can see that this map doesn’t have any fixed points like

the previous problem and we can see this by multiplying both sides by the inverse. Therefore,

this means that L(f) = L(Id) = 0 since f is homotopic to the identity map by the straight line

homotopy.

7 Week 7

(1) I don’t know how to draw it in Tikz but I can describe it. On the x-axis, the vectors point to

the left while on the y-axis, the vectors point to the right. On the y = x line, the vectors point up

while on the y = −x line, the vectors point down. The rest of the vectors are defined to make the

assignment of tangent vectors smooth. This means that when we go from the positive x-axis to the

negative one, we rotate clockwise once and the same when we come back to the positive x-axis so

the index is −2.

(2) Notice that the curve t 7→ ht(z) is just a line through z and the origin. However, we can see

that v is a source meaning that all the vectors point out from the origin. This means that our line

is tangent to v so it is the flow of v.

Now we can see that the zero at the origin has index 1 since v is a source so ind0(v) = 1.

Additionally, we can see that L0(ht) = 1 so ind0(v) = L0.

(3) We can see that v is a circulation in the counterclockwise direction so ind0(v) = 1. Addi-

tionally, just like before L0(ht) = 1 so ind0(v) = L0.
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(4) We know that a torus is just a circle rotate along another circle. Let S be the circle that is

actually rotating. At each point on S, we draw the tangent vector pointing to the right and this is

our nonvanishing vector field. Specifically, the vector field is v(x, y) = (y,−x) Now as we rotate S,

we draw this vector field and when we are done, we have a nonvanishing vector field for the torus.

(5) We can imagine taking the surface and holding it vertically. Then we pour water at the

top and track how the particles fall. Pouring water acts like a source and the path of the particles

determine the vector field with 1 zero.

(6) We claim that the vector field v(x1, x2, ..., xn+1) = (x2,−x1, x4,−x3, ..., xn+1,−xn) where

(xi, x2i) → (x2i,−xi) for i = 1, 2, ..., (n+ 1)/2. This definition works since n is odd so n+ 1 is even.

First, we must check that this is a valid vector field on Sn i.e. we must check that all the vectors

are tangent to Sn. This is indeed the case since

(x1, x2, ..., xn+1) · (x2,−x1, x4,−x3, ..., xn+1,−xn) = 0.

Next, the vector field is nowhere vanishing since the only place it vanishes is when x1 = · · · =
xn+1 = 0 but this is never the case on Sn.

(7) When X = Rn, we see that Tx(X) = Tx(Rn) = Rn. This means that dfx : Rn → R which is

defined by

dfx(h) = lim
t→0

f(x+ th)− f(x)

t
.

This means that

lim
t→0

f(x+ tw)− f(x)

t
= ∇(f) · w.

The left hand side is just the directional derivative so since we are dealing with Euclidean space,(
∂f

∂x1
, . . . ,

∂f

∂xn

)
· w = ∇(f) · w

which implies

∇(f) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

(8) The zeros of the gradient field is all x such that ∇(f)(x) = 0. This can be written as

∇(f)(x) ·w = 0 for any w ∈ Tx(X) = Rn. By the definition of the gradient field, we have dfx(w) = 0

which is the definition of a critical point at x.

Next, if x is a nondegenerate zero of ∇(f)(x), then the map d(∇(f))x : Tx(X) → Tx(x) is an

bijection. This happens if and only if d2fx ̸= 0 so x is a nondegenerate critical point of f . Finally,

all nondegenerate zeros are isolated zeros so if we pick an f such that all critical points of f are

nondegenerate, we see that ∇(f) is our desired vector field.

(9) The sum of the indices of v at its zeros inside W is just χ(W\∂W ). (What is the degree of

a map?)

(10) We know that χ(X) = V − E + F . Therefore,

6χ(X) = 6V − 6E + 6F =

(∑
v∈V

6

)
− 6E + 6F.

Now notice that each face as 3 edges giving us a total of 3F edges which is an over count since we

are double counting the edges. (An edge will be counted by the two faces it connects.) This means

that E = 3F/2 so

6χ(X) =

(∑
v∈V

6

)
− 6 · 3F

2
+ 6F =

(∑
v∈V

6

)
+ 3F.
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We can count the number of faces using
∑

v∈V κ(v) but this is an overcount since each face has 3

vertices and we are triple counting. Therefore

6χ(X) =

(∑
v∈V

6

)
+ 3 · 1

3

∑
v∈V

κ(v) =
∑
v∈V

(6− κ(v)).

(11) Tiling a sphere with hexagons and pentagons is still triangulation since a hexagon is six

triangles and a pentagon is five. This means that χ(X) = V − E + F = 2. Let’s say there are

n hexagons and m pentagons. First we count the number of vertices. Each shape has one vertex

inside it when we split it into triangles so this is a total of n+m inside vertices. Next, we assume

that 3 facets meet at one vertex so the total number of outside vertices are triple counting giving is

(6n+ 5m)/3. This means that V = (9n+ 8m)/3.

Next we go onto edges. First there are a total of 6n+ 5m edges inside the shapes. Each outside

edge is double counted giving us a total of (6n+5m)/2. Adding these up gives us E = 3(6n+5m)/2.

Finally, the hexagon has six faces and the pentagon has five so F = 6n+ 5m. Putting everything

together gives us
9n+ 8m

3
− 3(6n+ 5m)

2
+ 6n+ 5m = 2.

Simplifying the left hand side gives us

9n+ 8m

3
− 6n+ 5m

2
=
m

6
= 2 =⇒ m = 12

which gives us the constraint that there must be 12 pentagons. This also shows that we should be

able to tile the sphere with 12 pentagons and n hexagons for n ̸= 1.

(12) Let X be our lie group and let fh : X → X be defined by fh(x) = h · x where h ∈ X and ·
is the group operation for X. Because of closure, notice that fh is a bijection and we can also see

that it is differentiable. Now we can define our vector field v : X → Rn as

v(h) = d(fh)e(v(e))

where e is the identity element. It is easy to see that this vector field never vanishes if v(e) ̸= 0

since dfh ̸= 0.

8 Week 8

(1) We see that
∂f

∂x
= 3x2 − 3y2 and

∂f

∂y
= −6xy.

We need these to both be 0. From the second partial derivative, this means that at least one of x

or y need to be 0. When either x or y become 0, the only way to make the first partial derivative 0

is by making the other variable 0. Therefore the only critical point is (0, 0). The Hessian at this

point is (
6x −6y

−6y −6x

)∣∣∣∣
(0,0)

=

(
0 0

0 0

)
which is clearly singular. Therefore (0, 0) is degenerate.

(2) We first find the critical points of of this new function. Notice that d(f + g)x = f ′(x) and

d(f + g)y = g′(x). Therefore, if (x, y) is a critical point, then f ′(x) = g′(x) = 0. Therefore, to get
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the set of critical points of f + g, we take the Cartesian product of the set of critical points of f

and g. Since the critical points of f and g are nondegenerate, the same must be true for f + g so

its a Morse function.

(3) If a = x + v is a critical value of E, we know that (x, v) ∈ N is a critical point of E. Let

n : Ũ → N be the parameterization that sends the first n coordinates to x̃ ∈ X and the next N −n

coordinates to ṽ ∈ RN such that v ⊥ Tx̃X. This means that the Jacobian of E at (x, v) is(
∂x
∂u1

· · · ∂x
∂un

∂x
∂un+1

· · · ∂x
∂uN

)
and this is singular. However, notice that this matrix is singular if and only if the Hessian matrix

at a,

hij =

(
∂x

∂ui
· ∂x
uj

− v · ∂2x

∂ui∂uj

)
,

is singular so we are done.

(4) We first show that this is a well-defined function. That is, we must prove that the same

point doesn’t get mapped to different real numbers. Two points x, y ∈ CPn are equal if x = λy for

some λ ∈ C\{0}. We have

f(λz0, ..., λzn) =

∑n
j=0 j|λzj |2∑n
j=0 |λzj |2

=
(n+ 1)|λ|2

∑n
j=0 j|zj |2

(n+ 1)|λ|2
∑n

j=0 |zj |2
= f(z0, ..., zn).

If we let zj = xj + iyj , we can turn f into a real valued function:

f(x0, ..., xn, y0, ..., yn) =

∑n
k=0 k(x

2
k + y2k)∑n

k=0 x
2
k + y2k

.

This means that
∂f

∂xj
=

2xj
∑n

k=0(j − k)(x2k + y2k)(∑n
k=0 x

2
k + y2k

)2
and

∂f

∂yj
=

2yj
∑n

k=0(j − k)(x2k + y2k)(∑n
k=0 x

2
k + y2k

)2 .

Now we set these derivatives to 0. Since all xk and yk cannot be 0, we can clear the denominator

which gives us

2xj

n∑
k=0

(j − k)(x2k + y2k) = 0,

2yj

n∑
k=0

(j − k)(x2k + y2k) = 0

for all 0 ≤ j ≤ n. Multiplying the bottom equation by i and adding the two equations gives us

2zj

n∑
k=0

(j − k)|zk|2 = 0.

This means that the only way to make this equation true for all j is to make zj is nonzero, for some

j, and make the rest of the zk’s zero. Therefore the critical points are

{(1, 0, ...0), (0, 1, ..., 0), ..., (0, 0, ..., 1)}.
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Now we must make sure the hessian at these points is not singular. Let us say that we are

considering the critical point where zj ̸= 0. Now notice that so far, we have been working with

coordinates of Cn+1 and not CPn since our coordinates are not scaling invarient. When we compute

the Hessian, we must make sure we are working with coordinates of CPn so in order to prevent zj
from scaling, we plug in xj = 1 and yj = 0 into our function and remove xj and yj as coordinates:

f =
j +

∑
k ̸=j k(x

2
k + y2k)

1 +
∑

k ̸=j x
2
k + y2k

and now we can take second order derivatives.

We can see that the only second order derivatives that are nonzero are

∂2f

∂x2k
,
∂f

∂xkyk
,
∂f

∂ykxk
,
∂2f

∂y2k

so the Hessian is just a 2× 2 grid of n×n diagonal matricies. Therefore, the Hessian is nonsingular

at the critical points. We can also find the index of the critical point where zj ̸= 0 is 2j.

(5) First we must check if f is invarient to scaling to make sure it is well defined:

f(cx, cy, cz) =
(cy)2 + 2(cz)2

(cx)2 + (cy)2 + (cz)2
=

c2(y2 + 2z2)

c2(x2 + y2 + z2)
=

y2 + 2z2

x2 + y2 + z2
.

Next we find this function’s critical points. Our partial derivatives are

∂f

∂x
=

−2x(y2 + 2z2)

(x2 + y2 + z2)2

∂f

∂y
=

2y(x2 + y2 + z2)− 2y(y2 + 2z2)

(x2 + y2 + z2)2
=

2y(x2 − z2)

(x2 + y2 + z2)2

∂f

∂z
=

4z(x2 + y2 + z2)− 2z(y2 + 2z2)

(x2 + y2 + z2)2
=

2z(x2 + y2)

(x2 + y2 + z2)2

which means that the critical points are {(1, 0, 0), (0, 1, 0), (0, 0, 1)} with indices 0, 1, 2, respectively.

(6)

(a) Let f : CP3 → Ĉ be defined by f(z0, z1, z2, z3) = (z20 + z21 + z22 + z23)/z
2
0 wehre Ĉ is the extend

complex plane that includes ∞. Therefore, we can let z0 = 0. The derivative is

dfa(h) =
a20(2a0h0 + 2a1h1 + 2a2h2 − 2a3h3) + 2a0h0(a

2
0 + a21 + a22 + a23)

a40

=
a0(2a0h0 + 2a1h1 + 2a2h2 + 2a3h3)− 2h0(a

2
0 + a21 + a22 + a23)

a30

=
(2a1h1 + 2a2h2 + 2a3h3)− (a21 + a22 + a23)

a30

which is surjective for all a ∈ CP3 except a1 = a2 = a3 = 0 which means that 1 is the only

critical value. By the Preimage theorem, since 0 is a regular value, we see that Q = f−1(0) is

a manifold of dimension 6− 2 = 4.
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(b) Let u = x + iy where |u| =
√
x2 + y2 = 1 =⇒ x2 + y2 = 1. This means that when we

multiply by u,

xj → xxj − yyj

yj → xyj + xjy.

Therefore, we have

f̃(uz) = λ((xx0 − yy0)(xy1 + x1y)− (xx1 − yy1)(xy0 + x0y))

+ µ((xx2 − yy2)(xy3 + x3y)− (xx3 − yy3)(xy2 + x02))

= λ(−x1x2y0 + x0x
2y1 − x1y

2y0 + x0y
2y1)

+ µ(−x3x2y2 + x2x
2y3 − x3y

2y2 + x2y
2y3)

= λ(x2 + y2)(x0y1 − x1y0) + µ(x2 + y2)(x2y3 − x3y2)

= λ(x0y1 − x1y0) + µ(x2y3 − x3y2)

= f̃(z).

(c) Let f(z) = f̃(z/|z|) for z ̸= 0. We know that f : CP3 → R since first, 0 is not included in CP3

and second, for a ∈ C\{0}, we have

f(az) = f̃

(
az

|az|

)
= f̃

(
a

|a|
· z
|z|

)
.

Since a/|a| has magnitude 1, we get

f(az) = f̃

(
a

|a|
· z
|z|

)
= f̃

(
z

|z|

)
= f(z).

(7)

(a) Without loss of generality, since either z0 or z1 has to nonzero, let z0 ̸= 0. We parametrize

CP1 by (z0, z1) 7→ (z1/z0) and (z1/z0) 7→ (1, z1). If z1 = reiθ, we can turn f (when m = 2)

into a real valued function on R2:

f(r, θ) =
|12 + r2e2iθ|
(12 + r2)m

=
(1 + r2 cos(2θ))2 + (r2 sin(2θ))2

(1 + r2)2

=
1 + 2r2 cos(2θ) + r2

(1 + r2)2
.

This means our derivatives are
∂f

∂θ
=

−4r2 sin(2θ)

(1 + r2)2
,

∂f

∂r
=

2r(−2r2 cos 2θ − r2 + 2 cos 2θ − 1)

(1 + r2)3
.

This means that (1, 0) and (1, 1) are both critical points. Now are second order derivatives

are
∂2f

∂θ2
=

−8r cos(2θ)

(1 + r2)2
,
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∂2f

(∂r)(∂θ)
=

∂2f

(∂θ)(∂r)
= −

8r sin (2θ)
(
−r2 + 1

)
(1 + r2)3

,

∂2f

∂r2
=

2
(
6r4 cos (2θ) + 3r4 − 16r2 cos (2θ) + 2r2 + 2 cos (2θ)− 1

)
(1 + r2)4

.

Now if r ̸= 0 satisfies 9r4 − 14r2 + 1 = 0 (which does have a nonzero real solution) and θ = 0,

then the Hessian as a row of zeros making it singular. Therefore (1, 1) is degenerate so f is

not a Morse function.

(8) We know that lines in R2 between lattice points become closed curves in R2/Z2. Therefore,

the topology of the sublevel set are loops on the torus because of the sinusoidal functions.

(9) We can create two minimum points at opposite sides of the sphere and these have index 0.

We can do the same for the maximum points and two different antipotal points. These points will

have index 2. Finally, we create saddle points for the index 1 points.

(10) We claim that we can make a function such that f−1(y) has two elements for all y ∈ R.
This is essentially a question of mapping R to 2R which can clearly be done since the cardinality of

the both these sets are infinity of the same magnitude. For example we can map −x and x to x for

all positive x. This means that when y is positive, we see that f−1(y) has two elements and when

y is negative, we see that f−1(y) has 0 elements.

(11) A Klein Bottle is a surface so it is a 2-manifold. Therefore, we can find a parameterization

of the surface to get a function f : R2 → R which we can clearly make a Morse function. For

example, we can set f(x) = cos(2πx) + cos(2πy).

(12) First we divide the noncompact manifold into an countably infinite number of compact

pieces. Then we can find a function on X that only has isolated critical points (which always exists).

Now we push each critical point from one compact piece to the next and keep doing this. At the

limit, we will have a function with no critical points.

9 Week 9

(1) The only homology group that is defined is the 2nd homology group which isH2 = ker(f2)/ im(f3)

where f2 : A→ 0 and f3 : 0 → A. This means that ker(f2)/ im(f3) = A/{0A} ∼= A where 0A is the

identity of A.

(2)

(a) Since the sequence is exact, the homotopy groups are trivial so H3 = ker(f3)/ im(f4) = 0

and H2 = ker(f2)/ im(f3) = 0. Therefore ker(f3) = im(f4) and ker(f2) = im(f3). Since

k2 : B → 0, we see that B = ker(f2) = im(f3) so f3 is surjective. Next f4 is homomorphism

so im(f4) is just the identity of A. Therefore, we have ker(f3) = im(f4) = 0A, or the identity

of A. This means that ker(f3) is trivial so f3 is injective. We have shown that f3 is a bijection

which is an isomorphism so A ∼= B.

(b) If the sequence is exact, then ker(fn) = im(fn+1). Since A⊕C ∼= B, there exists isomorphisms

f̃ : A⊕ C → B and f̃−1 : B → A⊕ C. Now let A′ = {(a, 0) : a ∈ A} so A′ ⊆ A⊕ C. We can

defined the maps f : A→ B and g : B → C as f is the first entry of f̃ |A′ and g is the second

entry of f̃−1. Notice that the image of f is the kernel of g. Finally, we see that f is injective

and g is surjective since f̃ and f̃−1 are isomorphisms so the sequence is exact.
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(c) In the previous problem, we used isomorphisms to prove something about homomorphisms.

The fact that A⊕C ∼= B gives us an isomorphism and we used it to create homomorphisms for

our exact sequences. Therefore it is natural that the other way doesn’t work. Our definitions

of f and g don’t imply that f̃ is an isomorphism since f was defined as a restriction of f̃ . It

could be the case that f̃ is an isomorphism on A′ but nowhere else in A. This means that the

sequence being exact is weaker than the condition B ∼= A⊕ C.

(6) Note that every surface of genus g can be written as

Sg = T#T · · ·#T

or the connected sum of g tori. Now H1(S1) = F2 so by the Künneth formula, we have H1(T) =
H1(S1×S1) = F4. Finally, the homology of a connected sum is just the direct sum of the homologies

so H1(Sg) = F4g.
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