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Tensors

Definition (Tensor)

A p-tensor on a vector space V is any real-valued function T such
that on V p that is multilinear i.e.

T (v1, ..., vj+av ′j , ..., vp) = T (vi , ..., vj , ..., vp)+aT (vi , ..., v
′
j , ..., vp).

We call the collection of all p-tensors J p(V ∗).

Remark

A tensor is like measurement we take of vectors in a vector space.

Example

A 1-tensor is a linear form so J p(V ∗) = V ∗. 1-tensor could
be a measurement of the length of a vector.
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Tensor Examples (contd.)

Example

A familiar 2-tensor is the dot product. This is like a
measurement of how orthogonal two vectors are.

Can measure volume of the parallelipiped with determinant.
The p-tensor is defined by T (v1, ..., vp) = det

(
v1 · · · vp

)
.

Definition (Tensor Product)

If T is a p-tensor and S is a q-tensor, then T ⊗ S is a p+ q tensor:

T ⊗ S(v1, ..., vp, u1, ..., uq) = T (v1, ..., vp) · S(u1, ..., uq)

Remark

Tensor product is not commutative!
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Alternating Tensors

Definition (Alternating Tensor)

A p-tensor T is called alternating if T = (−1)πTπ where

Tπ(v1, v2, ..., vp) = T (vπ(1), vπ(2), ..., vπ(p))

Definition

Let T be a p-tensor. We define the function Alt(T ) as

Alt(T ) =
1

p!

∑
π∈Sp

(−1)πTπ.

Proposition

Alt(T ) is indeed an alternating tensor for all p-tensors T .



Exterior Algebra Exterior Calculus De Rham Cohomology Groups Homotopy Invarience

Alternating Tensors

Definition (Alternating Tensor)

A p-tensor T is called alternating if T = (−1)πTπ where

Tπ(v1, v2, ..., vp) = T (vπ(1), vπ(2), ..., vπ(p))

Definition

Let T be a p-tensor. We define the function Alt(T ) as

Alt(T ) =
1

p!

∑
π∈Sp

(−1)πTπ.

Proposition

Alt(T ) is indeed an alternating tensor for all p-tensors T .



Exterior Algebra Exterior Calculus De Rham Cohomology Groups Homotopy Invarience

Alternating Tensors

Definition (Alternating Tensor)

A p-tensor T is called alternating if T = (−1)πTπ where

Tπ(v1, v2, ..., vp) = T (vπ(1), vπ(2), ..., vπ(p))

Definition

Let T be a p-tensor. We define the function Alt(T ) as

Alt(T ) =
1

p!

∑
π∈Sp

(−1)πTπ.

Proposition

Alt(T ) is indeed an alternating tensor for all p-tensors T .



Exterior Algebra Exterior Calculus De Rham Cohomology Groups Homotopy Invarience

Alternating Tensors Examples

Example

If T is a 1-tensor, every π ∈ S1 is even so
Tπ = T =⇒ T = (−1)πTπ.

All 1-tensors are alternating

Example

When T is alternating and T = (−1)πTπ,

Alt(T ) =
1

p!

∑
π∈Sp

(−1)πTπ =
1

p!

∑
π∈Sp

T = T .

Remark

If Λp(V ∗) is set of alternating p-tensors, it’s subspace of J p(V ∗).
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Wedge Product

Definition (Wedge Product)

If T ∈ Λp(V ∗) and S ∈ Λq(V ∗), the wedge product is the p + q
tensor T ∧ S ∈ Λp+q(V ∗) defined by

T ∧ S = Alt(T ⊗ S).

Proposition

If {ϕ1, ..., ϕk} is a basis of V ∗, then {ϕI : 1 ≤ i1 < · · · < ip ≤ k} is
a basis of Λp(V ∗) where I = (i1, ..., ip) and ϕI = ϕi1 ∧ · · · ∧ ϕip .

Remark

The wedge prodcut is anticommutative i.e.

T ∧ S = (−1)pqS ∧ T
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Exterior Calculus
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Differential Forms

Definition (Differential p-forms)

Let X be a smooth manifold. A differential p-form on X is a
function ω that assigns each point x ∈ X to an alternating
p-tensor ωx on the tangent space of X at x . This means that
ωx ∈ Λp(Tx(X )∗). The set of all p-forms on X is denoted by
Ωp(X ).

Remark

Recall tensors = measuring devices for vector space

In a differential form, we assign each point on a smooth
manifold to these measuring devices

Differential form = instructions for how to measure tangent
vectors at each point on a manifold
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Differential Form Examples

Definition

We can do operations on p-forms:

(ω + ω′)x = ωx + ω′
x

(ω ∧ θ)x = ωx ∧ θx

Example

A 0-form assigns point on X to alternating 0-tensor = real
value

0-form is real-valued function on X

Example

If ϕ : X → R is smooth, then dϕx is 1-tensor on Tx(X ).

x 7→ dϕx defines the 1-form, dϕ, on X called differential of ϕ.
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The Exterior Derivative

Proposition

Let x1, ..., xk be coordinate functions for Rk and
dxI = dxi1 ∧ · · · ∧ dxip where I = (i1, ..., ip). Every p-form on an
open set U ⊆ Rk can be uniquely written as

∑
I aIdxI where the

sum ranges over all increasing index squences I and the aI are
0-forms on U.

Definition (Exterior Derivative)

Let ω =
∑

I aIdxI be a smooth p-form on an open set of Rk . The
exterior derivative of ω is the (p + 1)-form

dω =
∑
I

daI ∧ dxI .
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The Exterior Derivative Rules

Remark

Can define exterior derivatives on a smooth manifold X by
considering coordinate charts.

Rules

Sum Rule:
d(ω + ω′) = dω + dω′

Product Rule (where ω ∈ Ωp(X )):

d(ω ∧ θ) = dω ∧ θ + (−1)pω ∧ dθ

Cocycle condition:
d(dω) = 0
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The Pullback Map

Definition (Pullback Map)

If f : X → Y be a smooth map and let dfx : Tx(X ) → Tf (x)(Y ) be
the derivative. The linear map f ∗ω : Ωp(Y ) → Ωp(X ) is called the
pullback by f at x and maps a p-form on Y , ω, to a p-form on x ,
f ∗ω, defined by

(f ∗ω)x(v1, ..., vk) = ωf (x)(dfx(v1), ..., dfx(vk)).

Proposition

The pullback commutes with the exterior derivative.
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De Rham Cohomology Groups
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Closed and Exact Forms

Definition

A p-form ω on X is closed if dω = 0 and exact if ω = dθ for some
(p − 1)-form θ. The set of all closed p-forms on X is denoted by
Zp(X ) and the set of all exact p-forms on X is denoted by Bp(X )

Proposition

All exact forms are closed.

Remark

Note that closed doesn’t imply exact!

Definition

Two closed p-forms ω, ω′ are called cohomologous, denoted by
ω ∼ ω′ if ω − ω′ is exact.
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De Rham Cohomology Groups

Definition (De Rham Cohomology Groups)

Consider the following sequence

0 → Ω0 d0

−→ Ω1 d1

−→ Ω2 d2

−→ · · ·

which we call cochain complex where dp is the exterior derivative
on p-forms. The pth De Rham cohomology group (or pth
cohomology group for short) is Hp(X ) = ker(dp)\ im(dp−1).

An element of Hp(X ) is called a cohomology class and the
cohomology class containing the p-form ω is denoted by [ω] i.e.

[ω] = {ω + dp−1ω′ : ω′ ∈ Ωp−1}.
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Homotopy Invarience
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The Theorem

Theorem (Homotopy Invarience)

If X and Y are homotopy equivalent smooth manifolds, then their
pth cohomology groups are isomorphic for every p i.e.
Hp(X ) ∼= Hp(Y ).

Proposition

Let f : X → Y between a smooth map. The pullback f ∗ carries
Zp(Y ) into Zp(X ) and Bp(Y ) into Bp(X ).

Definition

If f : X → Y is a smooth map, the pullback f ∗ creates the induced
cohomology map (still denoted by f ∗) from Hp(Y ) to Hp(X ):

f ∗[ω] = [f ∗ω].
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The Proof

Remark

Homotopic smooth maps induce the same cohomology map.

Question

If f , g : X → Y , what does it mean for f ∗ = g∗?

Answer

If f ∗ = g∗, then
f ∗ω − g∗ω = dθ

since this would mean
f ∗[ω]− g∗[ω] = [f ∗ω]− [g∗ω] = [dθ] = 0 or the identity.
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The Proof (contd.)

Answer (contd.)

We can generate the θ with h : Ωp(Y ) → Ωp−1(X ) so
condition becomes

f ∗ω − g∗ω = d(hω) + h(dω).

h is called a homotopy operator.

Definition

If X is a smooth manifold and t ∈ I , let it : X → X × I be the
map it(x) = (x , t).

Lemma

For any smooth manifold X , there exists a homotopy operator
between i∗0 , i

∗
1 : Ωp(X × I ) → Ωp(X ) for every p.
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The Proof (contd.)

Lemma

If X and Y are smooth manifolds and f , g : X → Y are homotopic
smooth maps. For every p, the induced cohomology maps
f ∗, g∗ : Hp(Y ) → Hp(X ) are equal.

Proof.

By previous lemma i∗0 and i∗1 are equal.

Since f and g are homotopic smooth maps, they are smoothly
homotopic so let H : X × I → Y be the smooth homotopy.

f = H ◦ i0 and g = H ◦ i1

f ∗ = (H ◦ i0)∗ = i∗0 ◦ H∗ = i∗1 ◦ H∗ = (H ◦ i1)∗ = g∗.

■
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The Proof (contd.)

Proof of Homotopy Invarience.

Let f : X → Y be homotopy equivalence with homotopy
inverse g : Y → X .

By the Whitney approximation theorem, there exists smooth
maps f̃ : X → Y homotopic to f and g̃ : Y → X homotopic
to g .

f̃ ◦ g̃ ≃ f ◦ g ≃ IdY

By second lemma,

(f̃ ◦ g̃)∗ = (IdY )
∗ =⇒ g̃∗ ◦ f̃ ∗ = IdHp(Y )

Similarly, we have g̃ ◦ f̃ ≃ g ◦ f ≃ IdX so f̃ ∗ ◦ g̃∗ = IdHp(X ).

Therefore, the map f̃ ∗ : Hp(Y ) → Hp(X ) is an isomorphism.

■
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Applications

Corollary (Topological Invarience)

If X and Y are homeomorphic smooth manifolds, then their
cohomology groups are isomorphic i.e. the cohomology groups are
topologically invarient.

Recall

The whole point of De Rham cohomology groups was to
investigate when closed forms are exact.

Definition

A star-shaped set U is a set where there exists a c ∈ U such that
for every x ∈ U, the line segment between c and x is contained in
U.
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Poincaré Lemma

Theorem (Poincaré Lemma)

If U is a star-shaped open subset of Rn, then Hp(X ) = 0, or the
trivial group, for p ≥ 1.

Corollary

Every closed form on X is locally exact i.e. each point in X has a
neighborhood on which every closed form is exact.

Proof.

Every point on X has neighborhood diffeomorphic to open
ball in Rn

Rn is star-shaped and cohomology groups are
diffeomorphically invarient so we’re done by Poincaré Lemma.

■
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■



Exterior Algebra Exterior Calculus De Rham Cohomology Groups Homotopy Invarience

The Proof

Lemma

If X is a contractible smooth manifold, then Hp(X ) = 0, or the
trivial group, for p ≥ 1.

Proof.

Because X is contractible, there exists an x such that
constant map cx : X → X is homotopic to the identity map

Let ιx : {x} → X be the inclusion map.

cx ◦ ιx = Id{x} and ιx ◦ cx ≃ IdX so ιx is homotopy equivalence

By homotopy invarience, Hp(X ) = Hp({x}) = 0 since {x} is
a 0-manifold.

■
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The Proof

Proof of the Poincaré Lemma.

A star-shaped domain is contractible because of straight-line
homotopy:

H(x , t) = c + t(x − c).

By previous lemma, we have Hp(U) = 0.
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The End

Fin.
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