Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An Introduction to De Rham Cohomology Groups

Nandana Madhukara

Euler Circle

June 5, 2023

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Exterior Algebra

Exterior Algebra o●oooo	Exterior Calculus 000000	De Rham Cohomology Groups	Homotopy Invarienc

Tensors

Definition (Tensor)

A *p*-tensor on a vector space V is any real-valued function T such that on V^p that is multilinear i.e.

$$T(v_1,...,v_j+av_j',...,v_p)=T(v_i,...,v_j,...,v_p)+aT(v_i,...,v_j',...,v_p).$$

We call the collection of all *p*-tensors $\mathcal{J}^p(V^*)$.

Exterior	А	ge	bra	
000000	С			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Tensors

Definition (Tensor)

A *p*-tensor on a vector space V is any real-valued function T such that on V^p that is multilinear i.e.

$$T(v_1,...,v_j+av_j',...,v_p)=T(v_i,...,v_j,...,v_p)+aT(v_i,...,v_j',...,v_p).$$

We call the collection of all *p*-tensors $\mathcal{J}^p(V^*)$.

Remark

A tensor is like measurement we take of vectors in a vector space.

Exterior Algebra	Exterior Calculus	De Rham Cohomology Groups	Homotopy Invarience
00000	000000	000	

Tensors

Definition (Tensor)

A *p*-tensor on a vector space V is any real-valued function T such that on V^p that is multilinear i.e.

$$T(v_1,...,v_j+av_j',...,v_p)=T(v_i,...,v_j,...,v_p)+aT(v_i,...,v_j',...,v_p).$$

We call the collection of all *p*-tensors $\mathcal{J}^p(V^*)$.

Remark

A tensor is like measurement we take of vectors in a vector space.

Example

• A 1-tensor is a linear form so $\mathcal{J}^p(V^*) = V^*$. 1-tensor could be a measurement of the length of a vector.

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tensor Examples (contd.)

Example

• A familiar 2-tensor is the dot product. This is like a measurement of how orthogonal two vectors are.

Homotopy Invarience

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Tensor Examples (contd.)

- A familiar 2-tensor is the dot product. This is like a measurement of how orthogonal two vectors are.
- Can measure volume of the parallelipiped with determinant. The *p*-tensor is defined by $T(v_1, ..., v_p) = \det (v_1 \cdots v_p)$.

Homotopy Invarience

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Tensor Examples (contd.)

- A familiar 2-tensor is the dot product. This is like a measurement of how orthogonal two vectors are.
- Can measure volume of the parallelipiped with determinant. The *p*-tensor is defined by $T(v_1, ..., v_p) = \det (v_1 \cdots v_p)$.

Tensor Examples (contd.)

Example

- A familiar 2-tensor is the dot product. This is like a measurement of how orthogonal two vectors are.
- Can measure volume of the parallelipiped with determinant. The *p*-tensor is defined by $T(v_1, ..., v_p) = \det (v_1 \cdots v_p)$.

Definition (Tensor Product)

If T is a p-tensor and S is a q-tensor, then $T \otimes S$ is a p + q tensor:

$$T \otimes S(v_1, ..., v_p, u_1, ..., u_q) = T(v_1, ..., v_p) \cdot S(u_1, ..., u_q)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tensor Examples (contd.)

Example

- A familiar 2-tensor is the dot product. This is like a measurement of how orthogonal two vectors are.
- Can measure volume of the parallelipiped with determinant. The *p*-tensor is defined by $T(v_1, ..., v_p) = \det (v_1 \cdots v_p)$.

Definition (Tensor Product)

If T is a p-tensor and S is a q-tensor, then $T \otimes S$ is a p+q tensor:

$$T \otimes S(v_1, ..., v_p, u_1, ..., u_q) = T(v_1, ..., v_p) \cdot S(u_1, ..., u_q)$$

Remark

Tensor product is not commutative!

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Alternating Tensors

Definition (Alternating Tensor)

A *p*-tensor *T* is called *alternating* if $T = (-1)^{\pi} T^{\pi}$ where

$$T^{\pi}(v_1, v_2, ..., v_p) = T(v_{\pi(1)}, v_{\pi(2)}, ..., v_{\pi(p)})$$

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alternating Tensors

Definition (Alternating Tensor)

A *p*-tensor *T* is called *alternating* if $T = (-1)^{\pi} T^{\pi}$ where

$$T^{\pi}(v_1, v_2, ..., v_p) = T(v_{\pi(1)}, v_{\pi(2)}, ..., v_{\pi(p)})$$

Definition

Let T be a p-tensor. We define the function Alt(T) as

$$\mathsf{Alt}(T) = \frac{1}{\rho!} \sum_{\pi \in S_{\rho}} (-1)^{\pi} T^{\pi}.$$

De Rham Cohomology Groups

Homotopy Invarience

Alternating Tensors

Definition (Alternating Tensor)

A *p*-tensor *T* is called *alternating* if $T = (-1)^{\pi} T^{\pi}$ where

$$T^{\pi}(v_1, v_2, ..., v_p) = T(v_{\pi(1)}, v_{\pi(2)}, ..., v_{\pi(p)})$$

Definition

Let T be a p-tensor. We define the function Alt(T) as

$$\operatorname{Alt}(T) = \frac{1}{p!} \sum_{\pi \in S_p} (-1)^{\pi} T^{\pi}.$$

Proposition

Alt(T) is indeed an alternating tensor for all p-tensors T.

・ロト・日本・日本・日本・日本・日本

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Alternating Tensors Examples

• If T is a 1-tensor, every
$$\pi \in S_1$$
 is even so $T^{\pi} = T \implies T = (-1)^{\pi} T^{\pi}$.

Exterior Algebra 0000●0 Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alternating Tensors Examples

- If T is a 1-tensor, every $\pi \in S_1$ is even so $T^{\pi} = T \implies T = (-1)^{\pi} T^{\pi}$.
- All 1-tensors are alternating

Exterior Algebra 0000●0 Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alternating Tensors Examples

- If T is a 1-tensor, every $\pi \in S_1$ is even so $T^{\pi} = T \implies T = (-1)^{\pi} T^{\pi}$.
- All 1-tensors are alternating

De Rham Cohomology Groups

Homotopy Invarience

Alternating Tensors Examples

Example

- If T is a 1-tensor, every $\pi \in S_1$ is even so $T^{\pi} = T \implies T = (-1)^{\pi} T^{\pi}$.
- All 1-tensors are alternating

Example

When T is alternating and $T = (-1)^{\pi} T^{\pi}$,

Alt
$$(T) = \frac{1}{p!} \sum_{\pi \in S_p} (-1)^{\pi} T^{\pi} = \frac{1}{p!} \sum_{\pi \in S_p} T = T.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

De Rham Cohomology Groups

Homotopy Invarience

Alternating Tensors Examples

Example

• If T is a 1-tensor, every
$$\pi \in S_1$$
 is even so $T^{\pi} = T \implies T = (-1)^{\pi} T^{\pi}$.

• All 1-tensors are alternating

Example

When T is alternating and $T = (-1)^{\pi} T^{\pi}$,

Alt
$$(T) = \frac{1}{p!} \sum_{\pi \in S_p} (-1)^{\pi} T^{\pi} = \frac{1}{p!} \sum_{\pi \in S_p} T = T.$$

Remark

If $\Lambda^{p}(V^{*})$ is set of alternating *p*-tensors, it's subspace of $\mathcal{J}^{p}(V^{*})$.

・ロト・日本・日本・日本・日本・日本

Exterior	Algebra
00000	Ŭ

De Rham Cohomology Groups

Homotopy Invarience

Wedge Product

Definition (Wedge Product)

If $T \in \Lambda^p(V^*)$ and $S \in \Lambda^q(V^*)$, the wedge product is the p + q tensor $T \land S \in \Lambda^{p+q}(V^*)$ defined by

 $T \wedge S = \operatorname{Alt}(T \otimes S).$

Exterior	Algebra
00000	Ŭ

De Rham Cohomology Groups

Homotopy Invarience

Wedge Product

Definition (Wedge Product)

If $T \in \Lambda^p(V^*)$ and $S \in \Lambda^q(V^*)$, the wedge product is the p + q tensor $T \land S \in \Lambda^{p+q}(V^*)$ defined by

 $T \wedge S = \operatorname{Alt}(T \otimes S).$

Proposition

If $\{\phi_1, ..., \phi_k\}$ is a basis of V^* , then $\{\phi_I : 1 \le i_1 < \cdots < i_p \le k\}$ is a basis of $\Lambda^p(V^*)$ where $I = (i_1, ..., i_p)$ and $\phi_I = \phi_{i_1} \land \cdots \land \phi_{i_p}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exterior	А	lge	bra
00000			

De Rham Cohomology Groups

Homotopy Invarience

Wedge Product

Definition (Wedge Product)

If $T \in \Lambda^p(V^*)$ and $S \in \Lambda^q(V^*)$, the wedge product is the p + q tensor $T \land S \in \Lambda^{p+q}(V^*)$ defined by

 $T \wedge S = \operatorname{Alt}(T \otimes S).$

Proposition

If $\{\phi_1, ..., \phi_k\}$ is a basis of V^* , then $\{\phi_I : 1 \le i_1 < \cdots < i_p \le k\}$ is a basis of $\Lambda^p(V^*)$ where $I = (i_1, ..., i_p)$ and $\phi_I = \phi_{i_1} \land \cdots \land \phi_{i_p}$.

Remark

The wedge prodcut is anticommutative i.e.

$$T \wedge S = (-1)^{pq}S \wedge T$$

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Exterior Calculus

Homotopy Invarience

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Differential Forms

Definition (Differential *p*-forms)

Let X be a smooth manifold. A differential p-form on X is a function ω that assigns each point $x \in X$ to an alternating p-tensor ω_x on the tangent space of X at x. This means that $\omega_x \in \Lambda^p(T_x(X)^*)$. The set of all p-forms on X is denoted by $\Omega^p(X)$.

Homotopy Invarience

Differential Forms

Definition (Differential *p*-forms)

Let X be a smooth manifold. A differential p-form on X is a function ω that assigns each point $x \in X$ to an alternating p-tensor ω_x on the tangent space of X at x. This means that $\omega_x \in \Lambda^p(T_x(X)^*)$. The set of all p-forms on X is denoted by $\Omega^p(X)$.

Remark

• Recall tensors = measuring devices for vector space

Homotopy Invarience

Differential Forms

Definition (Differential *p*-forms)

Let X be a smooth manifold. A differential p-form on X is a function ω that assigns each point $x \in X$ to an alternating p-tensor ω_x on the tangent space of X at x. This means that $\omega_x \in \Lambda^p(T_x(X)^*)$. The set of all p-forms on X is denoted by $\Omega^p(X)$.

Remark

- Recall tensors = measuring devices for vector space
- In a differential form, we assign each point on a smooth manifold to these measuring devices

Homotopy Invarience

Differential Forms

Definition (Differential *p*-forms)

Let X be a smooth manifold. A differential p-form on X is a function ω that assigns each point $x \in X$ to an alternating p-tensor ω_x on the tangent space of X at x. This means that $\omega_x \in \Lambda^p(T_x(X)^*)$. The set of all p-forms on X is denoted by $\Omega^p(X)$.

Remark

- Recall tensors = measuring devices for vector space
- In a differential form, we assign each point on a smooth manifold to these measuring devices
- Differential form = instructions for how to measure tangent vectors at each point on a manifold

Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

•
$$(\omega \wedge \theta)_{x} = \omega_{x} \wedge \theta_{x}$$

Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

•
$$(\omega \wedge \theta)_{x} = \omega_{x} \wedge \theta_{x}$$

Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

•
$$(\omega \wedge \theta)_x = \omega_x \wedge \theta_x$$

Example

• A 0-form assigns point on X to alternating 0-tensor = real value

Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

•
$$(\omega \wedge \theta)_x = \omega_x \wedge \theta_x$$

- A 0-form assigns point on X to alternating 0-tensor = real value
- 0-form is real-valued function on X

Exterior Calculus

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

•
$$(\omega \wedge \theta)_x = \omega_x \wedge \theta_x$$

- A 0-form assigns point on X to alternating 0-tensor = real value
- 0-form is real-valued function on X

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

•
$$(\omega \wedge \theta)_x = \omega_x \wedge \theta_x$$

Example

- A 0-form assigns point on X to alternating 0-tensor = real value
- 0-form is real-valued function on X

Example

• If $\phi: X \to \mathbb{R}$ is smooth, then $d\phi_x$ is 1-tensor on $T_x(X)$.

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

Differential Form Examples

Definition

We can do operations on *p*-forms:

•
$$(\omega + \omega')_x = \omega_x + \omega'_x$$

•
$$(\omega \wedge \theta)_x = \omega_x \wedge \theta_x$$

Example

- A 0-form assigns point on X to alternating 0-tensor = real value
- 0-form is real-valued function on X

Example

- If $\phi: X \to \mathbb{R}$ is smooth, then $d\phi_x$ is 1-tensor on $\mathcal{T}_x(X)$.
- $x \mapsto d\phi_x$ defines the 1-form, $d\phi$, on X called *differential* of ϕ .

イロト 人間 とくほと くほう

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Exterior Derivative

Proposition

Let $x_1, ..., x_k$ be coordinate functions for \mathbb{R}^k and $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_p}$ where $I = (i_1, ..., i_p)$. Every p-form on an open set $U \subseteq \mathbb{R}^k$ can be uniquely written as $\sum_I a_I dx_I$ where the sum ranges over all increasing index squences I and the a_I are 0-forms on U.

Homotopy Invarience

The Exterior Derivative

Proposition

Let $x_1, ..., x_k$ be coordinate functions for \mathbb{R}^k and $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_p}$ where $I = (i_1, ..., i_p)$. Every p-form on an open set $U \subseteq \mathbb{R}^k$ can be uniquely written as $\sum_I a_I dx_I$ where the sum ranges over all increasing index squences I and the a_I are 0-forms on U.

Definition (Exterior Derivative)

Let $\omega = \sum_{I} a_{I} dx_{I}$ be a smooth *p*-form on an open set of \mathbb{R}^{k} . The exterior derivative of ω is the (p + 1)-form

$$d\omega = \sum_{I} da_{I} \wedge dx_{I}.$$
Exterior Calculus 0000●0 De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The Exterior Derivative Rules

Remark

Can define exterior derivatives on a smooth manifold X by considering coordinate charts.

Exterior Calculus 0000●0 De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

The Exterior Derivative Rules

Remark

Can define exterior derivatives on a smooth manifold X by considering coordinate charts.

Rules

• Sum Rule:

$$d(\omega + \omega') = d\omega + d\omega'$$

Exterior Calculus 0000●0 De Rham Cohomology Groups

Homotopy Invarience

The Exterior Derivative Rules

Remark

Can define exterior derivatives on a smooth manifold X by considering coordinate charts.

Rules

• Sum Rule:

$$d(\omega + \omega') = d\omega + d\omega'$$

• Product Rule (where $\omega \in \Omega^{p}(X)$):

$$d(\omega \wedge \theta) = d\omega \wedge \theta + (-1)^{p} \omega \wedge d\theta$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Exterior Calculus 0000●0 De Rham Cohomology Groups

Homotopy Invarience

The Exterior Derivative Rules

Remark

Can define exterior derivatives on a smooth manifold X by considering coordinate charts.

Rules

• Sum Rule:

$$d(\omega + \omega') = d\omega + d\omega'$$

• Product Rule (where $\omega \in \Omega^{p}(X)$):

$$d(\omega \wedge heta) = d\omega \wedge heta + (-1)^p \omega \wedge d heta$$

• Cocycle condition:

$$d(d\omega) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Pullback Map

Definition (Pullback Map)

If $f: X \to Y$ be a smooth map and let $df_x : T_x(X) \to T_{f(x)}(Y)$ be the derivative. The linear map $f^*\omega : \Omega^p(Y) \to \Omega^p(X)$ is called the *pullback by* f at x and maps a p-form on Y, ω , to a p-form on x, $f^*\omega$, defined by

$$(f^*\omega)_x(v_1,...,v_k) = \omega_{f(x)}(df_x(v_1),...,df_x(v_k)).$$

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Pullback Map

Definition (Pullback Map)

If $f: X \to Y$ be a smooth map and let $df_x : T_x(X) \to T_{f(x)}(Y)$ be the derivative. The linear map $f^*\omega : \Omega^p(Y) \to \Omega^p(X)$ is called the *pullback by* f at x and maps a p-form on Y, ω , to a p-form on x, $f^*\omega$, defined by

$$(f^*\omega)_x(v_1,...,v_k) = \omega_{f(x)}(df_x(v_1),...,df_x(v_k)).$$

Proposition

The pullback commutes with the exterior derivative.

Exterior Calculu 000000 De Rham Cohomology Groups $_{\odot OO}$

Homotopy Invarience

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

De Rham Cohomology Groups

De Rham Cohomology Groups $\circ \bullet \circ$

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Closed and Exact Forms

Definition

A *p*-form ω on X is closed if $d\omega = 0$ and exact if $\omega = d\theta$ for some (p-1)-form θ . The set of all closed *p*-forms on X is denoted by $Z^p(X)$ and the set of all exact *p*-forms on X is denoted by $B^p(X)$

De Rham Cohomology Groups $\circ \bullet \circ$

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Closed and Exact Forms

Definition

A *p*-form ω on X is closed if $d\omega = 0$ and exact if $\omega = d\theta$ for some (p-1)-form θ . The set of all closed *p*-forms on X is denoted by $Z^p(X)$ and the set of all exact *p*-forms on X is denoted by $B^p(X)$

Proposition

All exact forms are closed.

De Rham Cohomology Groups $0 \bullet 0$

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Closed and Exact Forms

Definition

A *p*-form ω on X is closed if $d\omega = 0$ and exact if $\omega = d\theta$ for some (p-1)-form θ . The set of all closed *p*-forms on X is denoted by $Z^p(X)$ and the set of all exact *p*-forms on X is denoted by $B^p(X)$

Proposition

All exact forms are closed.

Remark

Note that closed doesn't imply exact!

De Rham Cohomology Groups $0 \bullet 0$

Homotopy Invarience

Closed and Exact Forms

Definition

A *p*-form ω on X is closed if $d\omega = 0$ and exact if $\omega = d\theta$ for some (p-1)-form θ . The set of all closed *p*-forms on X is denoted by $Z^p(X)$ and the set of all exact *p*-forms on X is denoted by $B^p(X)$

Proposition

All exact forms are closed.

Remark

Note that closed doesn't imply exact!

Definition

Two closed *p*-forms ω , ω' are called *cohomologous*, denoted by $\omega \sim \omega'$ if $\omega - \omega'$ is exact.

・ ▲理 > ▲ 田 > ▲ 田 > ▲ 国 > 202~

De Rham Cohomology Groups $\circ \circ \bullet$

Homotopy Invarience

De Rham Cohomology Groups

Definition (De Rham Cohomology Groups)

Consider the following sequence

$$0 \to \Omega^0 \xrightarrow{d^0} \Omega^1 \xrightarrow{d^1} \Omega^2 \xrightarrow{d^2} \cdots$$

which we call *cochain complex* where d^p is the exterior derivative on *p*-forms. The *p*th *De Rham cohomology group* (or *p*th *cohomology group* for short) is $H^p(X) = \ker(d^p) \setminus \operatorname{im}(d^{p-1})$.

An element of $H^p(X)$ is called a *cohomology class* and the cohomology class containing the *p*-form ω is denoted by $[\omega]$ i.e.

$$[\omega] = \{\omega + d^{p-1}\omega' : \omega' \in \Omega^{p-1}\}.$$

Exterior Calculu 000000 De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Homotopy Invarience

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Theorem

Theorem (Homotopy Invarience)

If X and Y are homotopy equivalent smooth manifolds, then their pth cohomology groups are isomorphic for every p i.e. $H^p(X) \cong H^p(Y).$

The Theorem

Theorem (Homotopy Invarience)

If X and Y are homotopy equivalent smooth manifolds, then their pth cohomology groups are isomorphic for every p i.e. $H^{p}(X) \cong H^{p}(Y).$

Proposition

Let $f : X \to Y$ between a smooth map. The pullback f^* carries $Z^p(Y)$ into $Z^p(X)$ and $B^p(Y)$ into $B^p(X)$.

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

The Theorem

Theorem (Homotopy Invarience)

If X and Y are homotopy equivalent smooth manifolds, then their pth cohomology groups are isomorphic for every p i.e. $H^{p}(X) \cong H^{p}(Y).$

Proposition

Let $f : X \to Y$ between a smooth map. The pullback f^* carries $Z^p(Y)$ into $Z^p(X)$ and $B^p(Y)$ into $B^p(X)$.

Definition

If $f : X \to Y$ is a smooth map, the pullback f^* creates the *induced* cohomology map (still denoted by f^*) from $H^p(Y)$ to $H^p(X)$:

$$f^*[\omega] = [f^*\omega].$$

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The Proof

Remark

Homotopic smooth maps induce the same cohomology map.

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

The Proof

Remark

Homotopic smooth maps induce the same cohomology map.

Question

If $f, g: X \to Y$, what does it mean for $f^* = g^*$?

De Rham Cohomology Groups

Homotopy Invarience

The Proof

Remark

Homotopic smooth maps induce the same cohomology map.

Question

If
$$f, g: X \to Y$$
, what does it mean for $f^* = g^*$?

Answer

• If
$$f^* = g^*$$
, then

$$f^*\omega - g^*\omega = d heta$$

since this would mean

 $f^*[\omega] - g^*[\omega] = [f^*\omega] - [g^*\omega] = [d heta] = 0$ or the identity.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Proof (contd.)

Answer (contd.)

We can generate the θ with h : Ω^p(Y) → Ω^{p-1}(X) so condition becomes

$$f^*\omega - g^*\omega = d(h\omega) + h(d\omega).$$

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Proof (contd.)

Answer (contd.)

We can generate the θ with h : Ω^p(Y) → Ω^{p-1}(X) so condition becomes

$$f^*\omega - g^*\omega = d(h\omega) + h(d\omega).$$

• *h* is called a *homotopy operator*.

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Proof (contd.)

Answer (contd.)

We can generate the θ with h : Ω^p(Y) → Ω^{p-1}(X) so condition becomes

$$f^*\omega - g^*\omega = d(h\omega) + h(d\omega).$$

• *h* is called a *homotopy operator*.

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Proof (contd.)

Answer (contd.)

We can generate the θ with h : Ω^p(Y) → Ω^{p-1}(X) so condition becomes

$$f^*\omega - g^*\omega = d(h\omega) + h(d\omega).$$

Definition

If X is a smooth manifold and $t \in I$, let $i_t : X \to X \times I$ be the map $i_t(x) = (x, t)$.

De Rham Cohomology Groups

Homotopy Invarience

The Proof (contd.)

Answer (contd.)

We can generate the θ with h : Ω^p(Y) → Ω^{p-1}(X) so condition becomes

$$f^*\omega - g^*\omega = d(h\omega) + h(d\omega).$$

Definition

If X is a smooth manifold and $t \in I$, let $i_t : X \to X \times I$ be the map $i_t(x) = (x, t)$.

Lemma

For any smooth manifold X, there exists a homotopy operator between $i_0^*, i_1^* : \Omega^p(X \times I) \to \Omega^p(X)$ for every p.

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

The Proof (contd.)

Lemma

If X and Y are smooth manifolds and $f, g : X \to Y$ are homotopic smooth maps. For every p, the induced cohomology maps $f^*, g^* : H^p(Y) \to H^p(X)$ are equal.

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

The Proof (contd.)

Lemma

If X and Y are smooth manifolds and $f, g : X \to Y$ are homotopic smooth maps. For every p, the induced cohomology maps $f^*, g^* : H^p(Y) \to H^p(X)$ are equal.

Proof.

• By previous lemma i_0^* and i_1^* are equal.

De Rham Cohomology Groups

Homotopy Invarience

The Proof (contd.)

Lemma

If X and Y are smooth manifolds and $f, g : X \to Y$ are homotopic smooth maps. For every p, the induced cohomology maps $f^*, g^* : H^p(Y) \to H^p(X)$ are equal.

Proof.

- By previous lemma i_0^* and i_1^* are equal.
- Since f and g are homotopic smooth maps, they are smoothly homotopic so let H : X × I → Y be the smooth homotopy.

De Rham Cohomology Groups

Homotopy Invarience

The Proof (contd.)

Lemma

If X and Y are smooth manifolds and $f, g : X \to Y$ are homotopic smooth maps. For every p, the induced cohomology maps $f^*, g^* : H^p(Y) \to H^p(X)$ are equal.

Proof.

- By previous lemma i_0^* and i_1^* are equal.
- Since f and g are homotopic smooth maps, they are smoothly homotopic so let H : X × I → Y be the smooth homotopy.

•
$$f = H \circ i_0$$
 and $g = H \circ i_1$

De Rham Cohomology Groups

Homotopy Invarience

The Proof (contd.)

Lemma

If X and Y are smooth manifolds and $f, g : X \to Y$ are homotopic smooth maps. For every p, the induced cohomology maps $f^*, g^* : H^p(Y) \to H^p(X)$ are equal.

Proof.

۲

- By previous lemma i_0^* and i_1^* are equal.
- Since f and g are homotopic smooth maps, they are smoothly homotopic so let H : X × I → Y be the smooth homotopy.

•
$$f = H \circ i_0$$
 and $g = H \circ i_1$

$$f^* = (H \circ i_0)^* = i_0^* \circ H^* = i_1^* \circ H^* = (H \circ i_1)^* = g^*$$

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

The Proof (contd.)

Proof of Homotopy Invarience.

 Let f : X → Y be homotopy equivalence with homotopy inverse g : Y → X.

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

The Proof (contd.)

Proof of Homotopy Invarience.

- Let f : X → Y be homotopy equivalence with homotopy inverse g : Y → X.
- By the Whitney approximation theorem, there exists smooth maps *f̃* : X → Y homotopic to f and *g̃* : Y → X homotopic to g.

イロト イロト イヨト イヨト

The Proof (contd.)

Proof of Homotopy Invarience.

- Let f : X → Y be homotopy equivalence with homotopy inverse g : Y → X.
- By the Whitney approximation theorem, there exists smooth maps *f̃* : X → Y homotopic to f and *g̃* : Y → X homotopic to g.
- $\tilde{f} \circ \tilde{g} \simeq f \circ g \simeq \operatorname{Id}_Y$

De Rham Cohomology Groups

Homotopy Invarience

The Proof (contd.)

Proof of Homotopy Invarience.

- Let f : X → Y be homotopy equivalence with homotopy inverse g : Y → X.
- By the Whitney approximation theorem, there exists smooth maps *f̃* : X → Y homotopic to f and *g̃* : Y → X homotopic to g.
- $\tilde{f} \circ \tilde{g} \simeq f \circ g \simeq \operatorname{Id}_Y$
- By second lemma,

$$(\tilde{f} \circ \tilde{g})^* = (\operatorname{\mathsf{Id}}_Y)^* \implies \tilde{g}^* \circ \tilde{f}^* = \operatorname{\mathsf{Id}}_{H^p(Y)}$$

The Proof (contd.)

Proof of Homotopy Invarience.

- Let f : X → Y be homotopy equivalence with homotopy inverse g : Y → X.
- By the Whitney approximation theorem, there exists smooth maps *f̃* : X → Y homotopic to f and *g̃* : Y → X homotopic to g.
- $\tilde{f} \circ \tilde{g} \simeq f \circ g \simeq \operatorname{Id}_Y$
- By second lemma,

$$(\tilde{f} \circ \tilde{g})^* = (\operatorname{Id}_Y)^* \implies \tilde{g}^* \circ \tilde{f}^* = \operatorname{Id}_{H^p(Y)}$$

• Similarly, we have $\tilde{g} \circ \tilde{f} \simeq g \circ f \simeq \operatorname{Id}_X$ so $\tilde{f}^* \circ \tilde{g}^* = \operatorname{Id}_{H^p(X)}$.

The Proof (contd.)

Proof of Homotopy Invarience.

- Let f : X → Y be homotopy equivalence with homotopy inverse g : Y → X.
- By the Whitney approximation theorem, there exists smooth maps *f̃* : X → Y homotopic to f and *g̃* : Y → X homotopic to g.
- $\tilde{f} \circ \tilde{g} \simeq f \circ g \simeq \operatorname{Id}_Y$
- By second lemma,

$$(\tilde{f} \circ \tilde{g})^* = (\operatorname{Id}_Y)^* \implies \tilde{g}^* \circ \tilde{f}^* = \operatorname{Id}_{H^p(Y)}$$

- Similarly, we have $\tilde{g} \circ \tilde{f} \simeq g \circ f \simeq \operatorname{Id}_X$ so $\tilde{f}^* \circ \tilde{g}^* = \operatorname{Id}_{H^p(X)}$.
- Therefore, the map $\tilde{f}^*: H^p(Y) \to H^p(X)$ is an isomorphism.

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Applications

Corollary (Topological Invarience)

If X and Y are homeomorphic smooth manifolds, then their cohomology groups are isomorphic i.e. the cohomology groups are topologically invarient.
Applications

Corollary (Topological Invarience)

If X and Y are homeomorphic smooth manifolds, then their cohomology groups are isomorphic i.e. the cohomology groups are topologically invarient.

Recall

The whole point of De Rham cohomology groups was to investigate when closed forms are exact.

・ロト・西ト・山田・山田・山口・

Applications

Corollary (Topological Invarience)

If X and Y are homeomorphic smooth manifolds, then their cohomology groups are isomorphic i.e. the cohomology groups are topologically invarient.

Recall

The whole point of De Rham cohomology groups was to investigate when closed forms are exact.

Definition

A star-shaped set U is a set where there exists a $c \in U$ such that for every $x \in U$, the line segment between c and x is contained in U.

De Rham Cohomology Groups $_{\rm OOO}$

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Poincaré Lemma

Theorem (Poincaré Lemma)

If U is a star-shaped open subset of \mathbb{R}^n , then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

De Rham Cohomology Groups

Homotopy Invarience

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Poincaré Lemma

Theorem (Poincaré Lemma)

If U is a star-shaped open subset of \mathbb{R}^n , then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

Corollary

Every closed form on X is locally exact i.e. each point in X has a neighborhood on which every closed form is exact.

De Rham Cohomology Groups

Homotopy Invarience

Poincaré Lemma

Theorem (Poincaré Lemma)

If U is a star-shaped open subset of \mathbb{R}^n , then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

Corollary

Every closed form on X is locally exact i.e. each point in X has a neighborhood on which every closed form is exact.

Proof.

• Every point on X has neighborhood diffeomorphic to open ball in \mathbb{R}^n

De Rham Cohomology Groups

Homotopy Invarience

Poincaré Lemma

Theorem (Poincaré Lemma)

If U is a star-shaped open subset of \mathbb{R}^n , then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

Corollary

Every closed form on X is locally exact i.e. each point in X has a neighborhood on which every closed form is exact.

- Every point on X has neighborhood diffeomorphic to open ball in \mathbb{R}^n
- Rⁿ is star-shaped and cohomology groups are diffeomorphically invarient so we're done by Poincaré Lemma.

Exterior Algebra 000000	Exterior Calculus 000000	De Rham Cohomology Groups	Homotopy Invarience
Iha Draat			

Lemma

If X is a contractible smooth manifold, then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exterior A	lgebra
000000	

Lemma

If X is a contractible smooth manifold, then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

Proof.

 Because X is contractible, there exists an x such that constant map c_x : X → X is homotopic to the identity map

Exterior	Algebra	
000000	о [–] с	

Lemma

If X is a contractible smooth manifold, then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

- Because X is contractible, there exists an x such that constant map c_x : X → X is homotopic to the identity map
- Let $\iota_x : \{x\} \to X$ be the inclusion map.

Exterior	A	bra
000000	С	

Lemma

If X is a contractible smooth manifold, then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

- Because X is contractible, there exists an x such that constant map c_x : X → X is homotopic to the identity map
- Let $\iota_x : \{x\} \to X$ be the inclusion map.
- $c_x \circ \iota_x = \mathsf{Id}_{\{x\}}$ and $\iota_x \circ c_x \simeq \mathsf{Id}_X$ so ι_x is homotopy equivalence

Lemma

If X is a contractible smooth manifold, then $H^p(X) = 0$, or the trivial group, for $p \ge 1$.

- Because X is contractible, there exists an x such that constant map c_x : X → X is homotopic to the identity map
- Let $\iota_x : \{x\} \to X$ be the inclusion map.
- $c_x \circ \iota_x = \mathsf{Id}_{\{x\}}$ and $\iota_x \circ c_x \simeq \mathsf{Id}_X$ so ι_x is homotopy equivalence
- By homotopy invariance, H^p(X) = H^p({x}) = 0 since {x} is a 0-manifold.

Exterior Algebra

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Proof

Proof of the Poincaré Lemma.

• A star-shaped domain is contractible because of straight-line homotopy:

$$H(x,t)=c+t(x-c).$$

Exterior Algebra

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Proof

Proof of the Poincaré Lemma.

• A star-shaped domain is contractible because of straight-line homotopy:

$$H(x,t)=c+t(x-c).$$

• By previous lemma, we have $H^p(U) = 0$.

Exterior Algebra

Exterior Calculus

De Rham Cohomology Groups

Homotopy Invarience

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The End

Fin.