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Tensors

Definition (Tensor)

A p-tensor on a vector space V is any real-valued function T such
that on VP that is multilinear i.e.

T(vi, ...y vJ-—l—avJ{, ey Vp) = T(Viy ooy Vi ooy Vp) FaT (Viy ey Vs oy V).

We call the collection of all p-tensors JP(V*).
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A tensor is like measurement we take of vectors in a vector space.
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Tensors

Definition (Tensor)
A p-tensor on a vector space V is any real-valued function T such
that on VP that is multilinear i.e.

T(vi, ...y vJ-—l—avJ{, e Vp) = T(Viy oo Vjy ooy Vp) +aT (v, ..y VJ{, ey Vp).

We call the collection of all p-tensors JP(V*).

4

A tensor is like measurement we take of vectors in a vector space.

@ A 1-tensor is a linear form so JP(V*) = V*. 1-tensor could
be a measurement of the length of a vector.
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Tensor Examples (contd.)

@ A familiar 2-tensor is the dot product. This is like a
measurement of how orthogonal two vectors are.
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Tensor Examples (contd.)

@ A familiar 2-tensor is the dot product. This is like a
measurement of how orthogonal two vectors are.

@ Can measure volume of the parallelipiped with determinant.
The p-tensor is defined by T(vq,...,vp) =det (vi - vp).
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Tensor Examples (contd.)

@ A familiar 2-tensor is the dot product. This is like a
measurement of how orthogonal two vectors are.

@ Can measure volume of the parallelipiped with determinant.
The p-tensor is defined by T(vq,...,vp) =det (vi - vp).
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Tensor Examples (contd.)

@ A familiar 2-tensor is the dot product. This is like a
measurement of how orthogonal two vectors are.

@ Can measure volume of the parallelipiped with determinant.
The p-tensor is defined by T(v1, ..., vp) = det (v1 vp).

Definition (Tensor Product)

If T is a p-tensor and S is a g-tensor, then T ® S is a p+ g tensor:

T ®S(Viyeooy Vp, U1, ooy ig) = T(va, .0, vp) - S(u, -, Ug)
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Tensor Examples (contd.)

@ A familiar 2-tensor is the dot product. This is like a
measurement of how orthogonal two vectors are.

@ Can measure volume of the parallelipiped with determinant.
The p-tensor is defined by T(v1, ..., vp) = det (v1 vp).

Definition (Tensor Product)

If T is a p-tensor and S is a g-tensor, then T ® S is a p+ g tensor:

T ®S(Viyeooy Vp, U1, ooy ig) = T(va, .0, vp) - S(u, -, Ug)

Tensor product is not commutative!
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Alternating Tensors

Definition (Alternating Tensor)
A p-tensor T is called alternating if T = (—1)"T™ where

TW(Vl, VY25 coog Vp) = T(Vﬂ(l), V7r(2)7 000 Vﬁ(p))
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Alternating Tensors

Definition (Alternating Tensor)
A p-tensor T is called alternating if T = (—1)"T™ where

T™(vi,v2, 5 Vp) = T(Vr(1) Vr(2)s -+ Vir(p))

Let T be a p-tensor. We define the function Alt(T) as

Alt(T o Z

' 7rESp

A

.
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Alternating Tensors

Definition (Alternating Tensor)
A p-tensor T is called alternating if T = (—1)"T™ where

T™(vi,v2, 5 Vp) = T(Vr(1) Vr(2)s -+ Vir(p))

Definition
Let T be a p-tensor. We define the function Alt(T) as

Alt(T o Z

' 7r65p

.

Proposition

Alt(T) is indeed an alternating tensor for all p-tensors T.
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Alternating Tensors Examples

o If T is a 1-tensor, every m € S; is even so
T7=T = T=(-1)"TT.
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Alternating Tensors Examples

o If T is a 1-tensor, every m € S; is even so
T"=T = T=(-1)"T".

@ All 1-tensors are alternating

.

When T is alternating and T = (—1)" T,

Alt(T) = :I (1) T = :' > T=T.

" €Sy " weSy

\,




Exterior Algebra
000000

Alternating Tensors Examples

o If T is a 1-tensor, every m € S; is even so
T"=T = T=(-1)"T".

@ All 1-tensors are alternating

.

When T is alternating and T = (—1)" T,

Alt(T) = :I (1) T = ; > T=T.

" €Sy " weSy

\,

If AP(V*) is set of alternating p-tensors, it's subspace of JP(V*).
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Wedge Product

Definition (Wedge Product)

If T e AP(V*) and S € N9(V*), the wedge product is the p+ q
tensor T A S € APT9(V/*) defined by

TAS=A(T®S).
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Wedge Product

Definition (Wedge Product)

If T e AP(V*) and S € N9(V*), the wedge product is the p+ q
tensor T A S € APT9(V/*) defined by

TAS=A(T®S).

€

Proposition

If {¢1,..., 0k} is a basis of V*, then {¢) : 1 < iy <---<ip < k}is
a basis of NP(V*) where | = (i, ..., ip) and ¢; = ¢i N --- A ¢j,.
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Wedge Product

Definition (Wedge Product)

If T e AP(V*) and S € N9(V*), the wedge product is the p+ q
tensor T A S € APT9(V/*) defined by

TAS=A(T®S).

€

Proposition

If {¢1,..., 0k} is a basis of V*, then {¢) : 1 < iy <---<ip < k}is
a basis of NP(V*) where | = (i, ..., ip) and ¢; = ¢i N --- A ¢j,.

The wedge prodcut is anticommutative i.e.

TAS=(-1)PISAT
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Differential Forms

Definition (Differential p-forms)

Let X be a smooth manifold. A differential p-form on X is a
function w that assigns each point x € X to an alternating
p-tensor wy on the tangent space of X at x. This means that
wx € NP(T(X)*). The set of all p-forms on X is denoted by
QP(X).
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Definition (Differential p-forms)

Let X be a smooth manifold. A differential p-form on X is a
function w that assigns each point x € X to an alternating
p-tensor wy on the tangent space of X at x. This means that
wx € NP(T(X)*). The set of all p-forms on X is denoted by
QP(X).

.

@ Recall tensors = measuring devices for vector space

.
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Definition (Differential p-forms)

Let X be a smooth manifold. A differential p-form on X is a
function w that assigns each point x € X to an alternating
p-tensor wy on the tangent space of X at x. This means that
wx € NP(T(X)*). The set of all p-forms on X is denoted by
QP(X).

.

@ Recall tensors = measuring devices for vector space

@ In a differential form, we assign each point on a smooth
manifold to these measuring devices

.
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Differential Forms

Definition (Differential p-forms)

Let X be a smooth manifold. A differential p-form on X is a
function w that assigns each point x € X to an alternating
p-tensor wy on the tangent space of X at x. This means that
wx € NP(T(X)*). The set of all p-forms on X is denoted by
QP(X).

.

@ Recall tensors = measuring devices for vector space

@ In a differential form, we assign each point on a smooth
manifold to these measuring devices

o Differential form = instructions for how to measure tangent
vectors at each point on a manifold

.
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Differential Form Examples

Definition
We can do operations on p-forms:

0 (wHw)x =wx + W,
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Definition

We can do operations on p-forms:
0 (wHw)x =wx + W,
0 (WA B)y =wy by

.

@ A O-form assigns point on X to alternating O-tensor = real
value

.
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.

@ A O-form assigns point on X to alternating O-tensor = real
value

@ 0O-form is real-valued function on X

.




Exterior Calculus
00000

Differential Form Examples

Definition

We can do operations on p-forms:
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@ A O-form assigns point on X to alternating O-tensor = real
value

@ 0O-form is real-valued function on X
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Differential Form Examples

Definition

We can do operations on p-forms:
0 (wHw)x =wx + W,
0 (WA B)y =wy by

.

@ A O-form assigns point on X to alternating O-tensor = real
value

@ 0O-form is real-valued function on X

.

e If ¢ : X — R is smooth, then d¢, is 1-tensor on T (X).

€
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Differential Form Examples

Definition

We can do operations on p-forms:
0 (wHw)x =wx + W,
0 (WA B)y =wy by

.

@ A O-form assigns point on X to alternating O-tensor = real
value

@ 0O-form is real-valued function on X

.

e If ¢ : X — R is smooth, then d¢, is 1-tensor on T (X).
@ x — d¢y defines the 1-form, d¢, on X called differential of gb.)
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The Exterior Derivative

Proposition

Let xi, ..., xi be coordinate functions for R¥ and

dx; = dxi A --- Adx;, where | = (i1, ...,I). Every p-form on an
open set U C R¥ can be uniquely written as >, ardx; where the
sum ranges over all increasing index squences | and the a; are
0-forms on U.
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The Exterior Derivative

Proposition

Let xi, ..., xi be coordinate functions for R¥ and

dx; = dxi A --- Adx;, where | = (i1, ...,I). Every p-form on an
open set U C R¥ can be uniquely written as >, ardx; where the
sum ranges over all increasing index squences | and the a; are
0-forms on U.

Definition (Exterior Derivative)

Let w =), a;dx; be a smooth p-form on an open set of RX. The
exterior derivative of w is the (p + 1)-form

dw = Zda, A dx;.
/

.
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The Exterior Derivative Rules

Can define exterior derivatives on a smooth manifold X by
considering coordinate charts.
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@ Sum Rule:

d(w +w') = dw + du’
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Can define exterior derivatives on a smooth manifold X by

considering coordinate charts.
v

@ Sum Rule:

d(w +w') = dw + du’
@ Product Rule (where w € QP(X)):

dwAf)=dwAb+ (—1)Pw A db

\
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The Exterior Derivative Rules

Can define exterior derivatives on a smooth manifold X by

considering coordinate charts.
v

@ Sum Rule:

d(w +w') = dw + du’
@ Product Rule (where w € QP(X)):

dwAf)=dwAb+ (—1)Pw A db

@ Cocycle condition:

d(dw) =0

\
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The Pullback Map

Definition (Pullback Map)
If f: X — Y be asmooth map and let dfy : T (X) — T¢(x)(Y) be
the derivative. The linear map f*w : QP(Y) — QP(X) is called the

pullback by f at x and maps a p-form on Y, w, to a p-form on x,
f*w, defined by

(Fw)x(vi, .oy Vi) = wr(x)(dfic(ve), ..., db(vi))-
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The Pullback Map

Definition (Pullback Map)

If f: X — Y be asmooth map and let dfy : T (X) — T¢(x)(Y) be
the derivative. The linear map f*w : QP(Y) — QP(X) is called the

pullback by f at x and maps a p-form on Y, w, to a p-form on x,
f*w, defined by

(Fw)x(vi, .oy Vi) = wr(x)(dfic(ve), ..., db(vi))-

A\

Proposition

The pullback commutes with the exterior derivative.
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Closed and Exact Forms

Definition

A p-form w on X is closed if dw = 0 and exact if w = df for some
(p — 1)-form 6. The set of all closed p-forms on X is denoted by
ZP(X) and the set of all exact p-forms on X is denoted by BP(X)
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Definition

A p-form w on X is closed if dw = 0 and exact if w = df for some
(p — 1)-form 6. The set of all closed p-forms on X is denoted by
ZP(X) and the set of all exact p-forms on X is denoted by BP(X)

Proposition
All exact forms are closed.
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Definition

A p-form w on X is closed if dw = 0 and exact if w = df for some
(p — 1)-form 6. The set of all closed p-forms on X is denoted by
ZP(X) and the set of all exact p-forms on X is denoted by BP(X)

Proposition
All exact forms are closed.

Note that closed doesn't imply exact!
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Closed and Exact Forms

Definition

A p-form w on X is closed if dw = 0 and exact if w = df for some
(p — 1)-form 6. The set of all closed p-forms on X is denoted by
ZP(X) and the set of all exact p-forms on X is denoted by BP(X)

Proposition

All exact forms are closed.

Note that closed doesn't imply exact!

Definition

Two closed p-forms w, w’ are called cohomologous, denoted by
w~wifw—u is exact.
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De Rham Cohomology Groups

Definition (De Rham Cohomology Groups)

Consider the following sequence
d° d? d?
-t 502 5 ...

which we call cochain complex where dP is the exterior derivative
on p-forms. The pth De Rham cohomology group (or pth
cohomology group for short) is HP(X) = ker(dP)\ im(dP~1).

An element of HP(X) is called a cohomology class and the
cohomology class containing the p-form w is denoted by [w] i.e.

[w] = {w+dP i : W € QP71).
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The Theorem

Theorem (Homotopy Invarience)

If X and Y are homotopy equivalent smooth manifolds, then their

pth cohomology groups are isomorphic for every p i.e.
HP(X) = HP(Y).
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The Theorem

Theorem (Homotopy Invarience)

If X and Y are homotopy equivalent smooth manifolds, then their

pth cohomology groups are isomorphic for every p i.e.
HP(X) = HP(Y).

Proposition

Let f : X — Y between a smooth map. The pullback f* carries
ZP(Y) into ZP(X) and BP(Y) into BP(X).
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The Theorem

Theorem (Homotopy Invarience)

If X and Y are homotopy equivalent smooth manifolds, then their
pth cohomology groups are isomorphic for every p i.e.
HP(X) = HP(Y).

Proposition

Let f : X — Y between a smooth map. The pullback f* carries
ZP(Y) into ZP(X) and BP(Y) into BP(X).

Definition
If f: X — Y is a smooth map, the pullback f* creates the induced
cohomology map (still denoted by *) from HP(Y') to HP(X):

Flw] = [Frw].

.
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The Proof

Homotopic smooth maps induce the same cohomology map.
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The Proof

Homotopic smooth maps induce the same cohomology map.
If f,g : X = Y, what does it mean for f* = g*?

o If f* = g*, then

ffw—g'w=db

since this would mean
*|w] — g*[w] = [f*w] — [g*w] = [dO] = 0 or the identity.
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The Proof (contd.)

Answer (contd.)

o We can generate the 6 with h: QP(Y) — QP~1(X) so
condition becomes

f*w — g*w = d(hw) + h(dw).
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The Proof (contd.)

Answer (contd.)

o We can generate the 6 with h: QP(Y) — QP~1(X) so
condition becomes

f*w — g*w = d(hw) + h(dw).

@ h is called a homotopy operator.
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Answer (contd.)

o We can generate the 6 with h: QP(Y) — QP~1(X) so
condition becomes

f*w — g*w = d(hw) + h(dw).

@ h is called a homotopy operator.
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The Proof (contd.)

Answer (contd.)

o We can generate the 6 with h: QP(Y) — QP~1(X) so
condition becomes

f*w — g*w = d(hw) + h(dw).

@ h is called a homotopy operator.

.

Definition
If X is a smooth manifold and t € [, let i; : X — X x | be the
map it(X) = (Xa t)'

\,
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The Proof (contd.)

Answer (contd.)

o We can generate the 6 with h: QP(Y) — QP~1(X) so
condition becomes

f*w — g*w = d(hw) + h(dw).

@ h is called a homotopy operator.

.

Definition
If X is a smooth manifold and t € [, let i; : X — X x | be the
map it(X) = (Xa t)'

\,

For any smooth manifold X, there exists a homotopy operator
between i§, if : QP(X x I) — QP(X) for every p.

\,

= = =
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The Proof (contd.)

If X and Y are smooth manifolds and f,g : X — Y are homotopic
smooth maps. For every p, the induced cohomology maps
* g% HP(Y) — HP(X) are equal.
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The Proof (contd.)

If X and Y are smooth manifolds and f,g : X — Y are homotopic
smooth maps. For every p, the induced cohomology maps
* g% HP(Y) — HP(X) are equal.

@ By previous lemma iy and ij are equal.
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The Proof (contd.)

If X and Y are smooth manifolds and f,g : X — Y are homotopic
smooth maps. For every p, the induced cohomology maps
* g% HP(Y) — HP(X) are equal.

@ By previous lemma iy and ij are equal.

@ Since f and g are homotopic smooth maps, they are smoothly
homotopic so let H: X x | — Y be the smooth homotopy.
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The Proof (contd.)

If X and Y are smooth manifolds and f,g : X — Y are homotopic
smooth maps. For every p, the induced cohomology maps
* g% HP(Y) — HP(X) are equal.

@ By previous lemma iy and ij are equal.

@ Since f and g are homotopic smooth maps, they are smoothly
homotopic so let H: X x | — Y be the smooth homotopy.

e f=Hoigandg=Hon
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The Proof (contd.)

If X and Y are smooth manifolds and f,g : X — Y are homotopic
smooth maps. For every p, the induced cohomology maps
* g% HP(Y) — HP(X) are equal.

@ By previous lemma iy and ij are equal.

@ Since f and g are homotopic smooth maps, they are smoothly
homotopic so let H: X x | — Y be the smooth homotopy.

o f=Hojpandg=Hoi
°
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The Proof (contd.)

Proof of Homotopy Invarience.

@ Let f: X — Y be homotopy equivalence with homotopy
inverse g : Y — X.
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The Proof (contd.)

Proof of Homotopy Invarience.

@ Let f: X — Y be homotopy equivalence with homotopy
inverse g : Y — X.

@ By the Whitney approximation theorem, there exists smooth
maps f : X — Y homotopic to f and g : Y — X homotopic
to g.
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The Proof (contd.)

Proof of Homotopy Invarience.

@ Let f: X — Y be homotopy equivalence with homotopy
inverse g : Y — X.

@ By the Whitney approximation theorem, there exists smooth
maps f : X — Y homotopic to f and g : Y — X homotopic
to g.

o fog~fog~Idy
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The Proof (contd.)

Proof of Homotopy Invarience.

@ Let f: X — Y be homotopy equivalence with homotopy
inverse g : Y — X.

@ By the Whitney approximation theorem, there exists smooth
maps f : X — Y homotopic to f and g : Y — X homotopic
to g.

o fog~fog~Idy

@ By second lemma,

(Fog)" = (Idy)* — &" o F* = Idmm(y)
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The Proof (contd.)

Proof of Homotopy Invarience.

@ Let f: X — Y be homotopy equivalence with homotopy
inverse g : Y — X.

@ By the Whitney approximation theorem, there exists smooth
maps f : X — Y homotopic to f and g : Y — X homotopic
to g.

o fog~fog~Idy

@ By second lemma,

(Fog)

(|C|y)* — g‘* o f’:* = Ide(Y)

o Similarly, we have o f ~ gof ~Idx so f* o g* = IdHe(x)-
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The Proof (contd.)

Proof of Homotopy Invarience.

@ Let f: X — Y be homotopy equivalence with homotopy
inverse g : Y — X.

@ By the Whitney approximation theorem, there exists smooth
maps f : X — Y homotopic to f and g : Y — X homotopic
to g.

o fog~fog~Idy

@ By second lemma,

(Fog)

(|C|y)* — g‘* o f’:* = Ide(Y)

o Similarly, we have o f ~ gof ~Idx so f* o g* = IdHe(x)-
o Therefore, the map * : HP(Y) — HP(X) is an isomorphism.

v

= = S =
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Applications

Corollary (Topological Invarience)

If X and Y are homeomorphic smooth manifolds, then their
cohomology groups are isomorphic i.e. the cohomology groups are
topologically invarient.
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Corollary (Topological Invarience)
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cohomology groups are isomorphic i.e. the cohomology groups are
topologically invarient.

.

The whole point of De Rham cohomology groups was to
investigate when closed forms are exact.

A
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Applications

Corollary (Topological Invarience)

If X and Y are homeomorphic smooth manifolds, then their
cohomology groups are isomorphic i.e. the cohomology groups are
topologically invarient.

.

The whole point of De Rham cohomology groups was to
investigate when closed forms are exact.

A

Definition
A star-shaped set U is a set where there exists a ¢ € U such that

for every x € U, the line segment between ¢ and x is contained in
.

.
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Poincaré Lemma

Theorem (Poincaré Lemma)

If U is a star-shaped open subset of R", then HP(X) = 0, or the
trivial group, for p > 1.
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Theorem (Poincaré Lemma)

If U is a star-shaped open subset of R", then HP(X) = 0, or the
trivial group, for p > 1.

.

Every closed form on X is locally exact i.e. each point in X has a
neighborhood on which every closed form is exact.

A
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Theorem (Poincaré Lemma)

If U is a star-shaped open subset of R", then HP(X) = 0, or the
trivial group, for p > 1.

.

Every closed form on X is locally exact i.e. each point in X has a
neighborhood on which every closed form is exact.

@ Every point on X has neighborhood diffeomorphic to open
ball in R"”
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Poincaré Lemma

Theorem (Poincaré Lemma)

If U is a star-shaped open subset of R", then HP(X) = 0, or the
trivial group, for p > 1.

.

Every closed form on X is locally exact i.e. each point in X has a
neighborhood on which every closed form is exact.

@ Every point on X has neighborhood diffeomorphic to open
ball in R"”

@ R" is star-shaped and cohomology groups are
diffeomorphically invarient so we're done by Poincaré Lemma.
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The Proof

If X is a contractible smooth manifold, then HP(X) = 0, or the
trivial group, for p > 1.
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The Proof

If X is a contractible smooth manifold, then HP(X) = 0, or the
trivial group, for p > 1.

@ Because X is contractible, there exists an x such that
constant map ¢y : X — X is homotopic to the identity map
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The Proof

If X is a contractible smooth manifold, then HP(X) = 0, or the
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o Let ¢y : {x} = X be the inclusion map.
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o Let ¢y : {x} = X be the inclusion map.
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The Proof

If X is a contractible smooth manifold, then HP(X) = 0, or the
trivial group, for p > 1.

@ Because X is contractible, there exists an x such that
constant map ¢y : X — X is homotopic to the identity map

o Let ¢y : {x} = X be the inclusion map.

@ CyOly = Id{X} and vty 0 cx =~ ldx so tx is homotopy equivalence

e By homotopy invarience, HP(X) = HP({x}) = 0 since {x} is
a 0-manifold.

v
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The Proof

Proof of the Poincaré Lemma.

@ A star-shaped domain is contractible because of straight-line
homotopy:
H(x,t) = ¢+ t(x — ¢).
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The Proof

Proof of the Poincaré Lemma.

@ A star-shaped domain is contractible because of straight-line
homotopy:
H(x,t) = ¢+ t(x — ¢).

@ By previous lemma, we have HP(U) = 0.
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The End

Fin.
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