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A Question about Pizza

Question

My 5 friends and ordered pizza and only 3 of us need to go:
someone needs to drive, someone needs to sit in the passenger
seat, and someone needs to sit in the back with the pizza. How
many ways can 3 of us go?

Solution

6 ways to pick driver

5 ways to pick passenger

4 ways to pick back seat

Total: 6× 5× 4 = 120
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More Pizza

Question

My 5 friends and I order pizza again but we decide to walk this
time. How many ways can we pick 3 people to go?

Solution

Order does not matter!

Similar to last time: first person → 6, second person → 5,
third person → 4

6× 5× 4 but this is overcounting

Over counting by 3× 2× 1

Total:
6× 5× 4

3× 2× 1
=

120

6
= 20
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More Pizza and More People

Question

n people order pizza and k of them need to walk to get the pizza.
How many ways can we pick the k people to go?

Solution

First person → n, Second person → n − 1, ..., kth person
→ n − (k − 1)

n × (n − 1)× · · · × n − (k − 1) = n!/(n − k)! but this is
overcounting

Over counting by k × (k − 1)× · · · × 1 = k!

Total:

n × (n − 1)× · · · × n − (k − 1)

k × k − 1× · · · × 1
=

n!

k!(n − k)!
=

(
n

k

)
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Path Counting

Question

How many ways are there to go from A to B in the grid below by
only going up and to the right.

A

B
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Practice Problems

Problem

The Senate has 100 members, consisting of 55 Republicans and 45
Democrats. In how many ways can I choose a 5-person committe
consisting of 3 Republicans and 2 Democrats?

Problem

Consider a regular octagon. How many triangles can be formed
whose vertices are the vertices of the octagon?

Problem

How many triangles can be formed whose vertices are points in a
5× 5 square grid of points?
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Practice Problems Contd.

Problem

How many points are there from A to B passing through C?

A

B

C

Problem

Nine lines are drawn in a plane. What is the largest possible
number of points in the plane at which at least two of the nine
lines intersect?
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More Challenging Problems

Problem

The sundae bar at Sarah’s favorite restaurant has 5 toppings: hot
fudge, sprinkles, walnuts, cherries, and whipped cream. In how
many different ways can Sarah top her sundae if she is restricted to
at most 2 toppings?

Problem

There are 5 different pairs of gloves, where left and right are
distinguishable. Select 4 from the 10 gloves.

How many ways are there to select 2 pairs of gloves?

How many ways are there to select 4 such that some 2 of the
4 make a pair?
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Challenging Problems contd.

Problem

In poker, a 5-card hand is called a three of a kind if there are three
cards of one rank and two other cards which are not the same rank
as each other or as the other three cards. How many 5-card hands
are three of a kind?

Problem

Use combinations to find the number of distinct arrangements of
the letters of ’ONONONONO‘
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Challenging Problems contd.

Problem

Let ABCDEFGH be a cube

How many different line segments can be formed by
connecting the vertices of the cube?

How many different triangles can be formed by connecting 3
of the vertices of the cube?

How many noncongruent triangles can be formed by
connecting 3 of the vertices of the cube?

Problem (AIME)

An integer is called snakelike if its decimal representation
a1a2a3 · · · ak satisfies ai < ai+1 if i is odd and ai > ai+1 if i is
even. How many snakelike integers between 1000 and 9999 have
four distinct digits?
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Pascal’s Triangle
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Some Interesting Things

Remark

The rows of Pascal’s Triangle are combinations.

Identity (Pascal) (
n − 1

k − 1

)
+

(
n − 1

k

)
=

(
n

k

)
.

Proposition(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
=

n∑
k=0

(
n

k

)
= 2n
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Practice Problems

Problem

Prove that
n∑

k=0

(
n

k

)
= 2n

using a committe-forming argument.

Problem

Prove the identity (
n − 1

k − 1

)
=

k

n

(
n

k

)

by algebra.

by a committe-forming argument.
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Challenging Problems

Problem

Find a formula for(
n

0

)(
n

1

)
+

(
n

1

)(
n

2

)
+

(
n

2

)(
n

3

)
+ · · ·

(
n

n − 1

)(
n

n

)

Problem (AIME)

Find the smallest value of n such that Row n of Pascal’s Triangle
contains three successive entries with the ration 3:4:5.

Problem

Try to find a way to generate the Fibonacci numbers from Pascal’s
triangle. Why does your way work?
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Binomial Theorem
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The Theorem

Problem

Expand the following:

(x + y)2

(x + y)3

(x + y)4

(x + y)5

Do you see a pattern?

Theorem (Binomial Theorem)

(x+y)n =

(
n

0

)
xn+

(
n

1

)
xn−1y + · · ·+

(
n

n

)
yn =

n∑
k=0

(
n

k

)
xn−kyk .
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Practice Problems

Problem

Prove
n∑

k=0

(
n

k

)
= 2n

Problem

Find a formula for
n∑

k=0

(−1)k
(
n

k

)

Problem

Find a formula for
n∑

k=0

2k
(
n

k

)
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Practice Problems

Problem

What is the coefficient of the x11 term in(
x2

2
− 3x

)7

?

Problem

Write (3− 2
√
5)5 in the form a+ b

√
5 for some integers a and b.

Problem

Compute (
16

0

)
+

(
16

2

)
+

(
16

4

)
+ · · ·+

(
16

16

)
.
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Challenging Problems

Problem

Can you find the general expression for the coefficient of the
x iy jzk term in the trinomial (x + y + z)n?

Problem

Compute the sum(
20

20

)
+

(
20

18

)(
1

2

)2

+

(
20

16

)(
1

2

)4

+ · · ·+
(
20

0

)(
1

2

)20

Problem

How many terms are in the expansions of:

(a+ b + c)8

(a+ b + c)8 + (a+ b − c)8
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The End

Fin.
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