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3 1. Week 1

1 Week 1

(1)

n Z[i] Z[ω]
2 (1 + i)(1− i) 2

3 3 (1 + ω)(1− ω)2

(3) Let a = a21 + a22 and b = b21 + b22. Notice that

ab = (a21 + a22)(b
2
1 + b22

= (a1b1)
2 + (a2b2)

2 + (a1b2)
2 + (a2b1)

2

= (a1b1 + a2b2)
2 + (a1b2 − a2b1)

2.

(4) Elements in Z[
√
−2] are of the form a+ b

√
2i so for z ∈ Z[

√
−2] is N(z) = a2 + 2b2. Setting

this equal to 1, we find that b = 0 and a = ±1 meaning that the units are ±1 .

(5) The norm for z = a+ b
√
2 ∈ Z[

√
2] is N(z) = (a+ b

√
2)(a− b

√
2) = a2 − 2b2. Setting this

equal to 1 means that a2 − 2b2 = 1 which is just Pell’s equation for n = 2. It has been proven that

if n is not a perfect square, then there are an infinite number of integer solutions to the equation.

More explicitly, if (a, b) is a solution then (4b2 + 1, 2ab) is also a solution:

(4b2 + 1)2 − 2(2ab)2 = (4b2 + 1)2 − 8b2(2b2 + 1)

= 16b4 + 8b2 + 1− 16b4 − 8b2 = 1

Finally, we see that a solution indeed exists, namely (3, 2), so this finishes the proof.

Now for Z[
√
3] our equation is a2 − 3b2 = 1. Just like before, we can notice that if (a, b) is a

solution, then (2a + 3b, a + 2b) is also a solution. Additionally, we have that (2, 1) is a solution

which proves that there are an infinite number of integer solutions. Therefore, there are an infinite

number of units in Z[
√
2] and Z[

√
3].

(6) Suppose π is not prime. Then it can be written as π = ab where neither a nor b is a

unit. Taking the norm of both sides gives us N(π) = N(ab) = N(a)N(b), using the multiplicative

property of norms. Since neither a nor b is a unit, we know that N(a), N(b) ̸= 1. Therefore we

have factorized N(π) which is supposedly prime into two integers that are neither 1 or N(π), so

this results in a contradiction.

(7) If R = Z, then N(α) = α and N(β) = β so the claim holds. Now if R = Z[i], then we can

have N(α) = N(β) and α and β differ by a phase ϕ ̸= 0. However, there is no guarantee eiϕ ∈ Z[i].

2 Week 2

(1)

(a) From Corollary 1.4, we know that −1 is a quadratic residue of an odd prime p iff p ≡ 1

(mod 4). Since this is not the case for 71, which is an odd prime, we have
(−1
71

)
= −1 .

(b) By Proposition 1.8, we see that
(

2
67

)
= −1 since 67 ≡ 3 (mod 8).

(c) Using Quadratic Reciprocity, we have(
61

127

)
=

(
127

61

)
=

(
5

61

)
=

(
61

5

)
=

(
1

5

)
= 1 .



4 2. Week 2

(d) Using Quadratic Reciprocity, we have(
53

79

)
=

(
79

53

)
=

(
26

53

)
=

(
2

53

)
·
(
13

53

)
= −

(
53

13

)
= −

(
1

13

)
= −1 .

(e) Using multiplicativity of Legendre symbols and factoring, we have(
12

59

)
=

(
2

59

)2

·
(

3

59

)
.

Now Quadratic Reciprocity gives us(
3

59

)
= −

(
59

3

)
= −

(
2

3

)
= 1.

Now the square of a Legendre symbol is always 1 so
(
12
59

)
= 1 .

(2) Clearly p and q are odd primes so by Quadratic Reciprocity, we have(
p

q

)
= −

(
q

p

)
meaning that q is a QR of p since p is a NQR of q. Therefore, there exists an x ∈ Fp such that

x2 ≡ q (mod p). The other solution is p− x.

(3) We must find the primes p such that 13 is a QR of p. Trivially, we see that p = 2 works. For

odd primes, we must find p such that
(
13
p

)
= 1. By Quadratic Reciprocity, we have(

13

p

)
=

( p

13

)
= 1

since 13 is not 3 modulo 4.

First, assume p < 13 so p = 3, 5, 7, 11. Using the first form, we see that p = 3, 7 works. Now we

consider the case where p > 13 so we use the second form. The quadratic residues modulo 13 are

1, 3, 4, 9, 10, and 12 so p must equal one of these modulo 13.

(4) Since p ̸= 2, we have(
−2

p

)
=

(
−1

p

)(
2

p

)
=

{
1 p ≡ 1, 3 (mod 8)

−1 p ≡ −1,−3 (mod 8)

from casework.



5 3. Week 3

(5) We have

p−1∑
a=1

ga =

p−1∑
a=1

p−1∑
t=0

(
t

p

)
ζat

=

p−1∑
t=0

(
t

p

) p−1∑
a=1

ζat

= 0

where the last step is because of Lemma 2.1 since t < p so t ̸≡ 0 (mod p).

3 Week 3

(1) Since 11 ≡ −6 (mod 17), we have(
11 + 3ω

17

)
3

=

(
−6 + 3ω

17

)
=

(
3

17

)
3

(
ω − 2

17

)
3

.

From Corollary 1.9, we get (
11 + 3ω

17

)
3

=

(
ω − 2

17

)
3

.

Now ω − 2 = ω2(ω2 − 2ω) = ω2(−1− 3ω) so(
ω − 2

17

)
3

=

(
ω2

17

)
3

(
−1− 3ω

17

)
3

.

(2) Let us first compute
(
ω
π

)
3
=

(
ω

a+bω

)
3
. We know that a = 3m− 1 but since π primary, we

have b ≡ 0 (mod 3) so b = 3n. Now we have

N(π)− 1

3
=

(3m− 1)2 − (3m− 1)(3n) + (3n)2 − 1

3

= 3m2 − 2m− 3mn+ n+ 3n2

= 3(m2 −mn+ n2)− 2m+ n.

This gives us (
ω

a+ bω

)
= ω−2m+n.

(3) Let g be a primitive root of p i.e. every a ∈ Fp can be written as a = gk for some k. Therefore,

we have ∑
a∈Fp

an =

p−2∑
k=0

gkn.

Next we multiply both sides by 1− gk to get

(1− gk)
∑
a∈Fp

an ≡ (1− gn)

p−2∑
k=0

gkn ≡ 1− g(p−1)k ≡ 0 (mod p)



6 4. Week 4

by Fermat’s Little Theorem. Now since 1 ≤ n ≤ p − 2, we know that 1 − gk ̸≡ 0 (mod p) so the

result follows. (How do I do this with cubic reciprocity?)

Now a polynomial with coefficients in Fp of degree at most p − 2 with f(0) = 0 is of the form

ap−2x
p−2 + ap−3x

p−3 + · · ·+ x so∑
a∈Fp

f(a) = ap−2

∑
a∈Fp

ap−2 + ap−3

∑
a∈Fp

ap−3 + · · ·
∑
a∈Fp

a = 0.

4 Week 4

(1) First, we see that x2 + y2 is always non-negative. Additionally, if the quadratic form is 0, the

only way for this to happen is if x = y = 0 so it’s positive definite. Similarly, we see that −x2 − y2

is always negative and equals 0 only if x = y = 0 so this quadratic form is negative definite. Next

we move on to x2 − 2y2 which can represent both positive and negative numbers so it’s indefinite.

(2) We can factor the quadratic form into x2 − 4xy + 4y2 = (x − 2y)2. Now notice that any

integer can be written in the form x− 2y which means that any perfect square can be represented

by x2 − 4xy + 4y2.

(4)

(a) We use the bound a ≤
√
−D/3 to get that a ≤ 1. Clearly a ̸= 0 since this implies b = 0 and

the discriminant would be 0. If a = 1, we know that either b = 0 or b = 1. The former case

implies −4c = −11 so c is not an integer which is a contradiction. Now when a = b = 1, we

have 1− 4c = −11 =⇒ c = 3. This means that h(−11) = 1.

(b) Using the same bound from before gives us a ≤ 2. Now the cases we must consider are

(a, b) = (1, 0), (1, 1), (2, 0), (2,−1), (2, 1), (2, 2). For each of these cases we get the equations

−4c = −17

1− 4c = −17

−8c = −17

1− 8c = −17

4− 8c = −17

which all produce non-integer solutions for c. Therefore, we find that h(−17) = 0.

(5) Let f(x, y) = ax2 + bxy+ cy2 and g(x, y) = a′x2 + b′xy+ c′y2 be equivalent quadratic forms.

This means that for α, β, γ, δ ∈ Z such that αδ − βγ = ±1,

g(x, y) = f(αx+ βy, γx+ δy)

= a(αx+ βy)2 + b(αx+ βy)(γx+ δy) + c(γx+ δy)2

= (aα2 + bαγ + cγ2)x2 + (2aαβ + bαδ + bβγ + 2cγδ)xy + (aβ2 + bβδ + cδ2)y2.

Therefore,

a′ = α2 + bαγ + cγ2

b′ = 2aαβ + bαδ + bβγ + 2cγδ

c′ = aβ2 + bβδ + cδ2.



7 5. Week 5

Now one way to write the discriminant of a quadratic form is

Disc(f) = −4 det

(
a b/2

b/2 c

)
.

Now notice that

Disc(g) = −4 det

(
a′ b′/2

b′/2 c′

)
= −4 det

((
α β

γ δ

)(
a b/2

b/2 c

)(
α β

γ δ

))
= Disc(f)

so we are done.

(7) A simple example is that 3 and 21 can be written as a sum of three perfect square: 3 =

12 + 12 + 12 and 21 = 12 + 22 + 42. However, notice that 63 cannot be written as a sum of three

squares. (I don’t know how to mathematically prove this but with a computer we can list out all

numbers of the form a2 + b2 + c2 where a, b, c ≤ 8 and 63 is not in this list).

5 Week 5

(1)

(a) First we see that both quadratic forms have discriminant −47 the hypothesis in Lemma 1 is

satisfied. Therefore, we must now find a B (mod 12) such that

B ≡ 1 (mod 4)

B ≡ −1 (mod 6)

B2 = −47 (mod 24).

We can see that B ≡ 5 (mod 12) so h′(x, y) = 6x2 + 5xy + 3y2 which properly equivalent to

h(x, y) = 3x2 + xy + 4y2.

(b) For this case, notice that the hypothesis of Lemma 1 does not hold so we write 2x2−xy+9y2

as the properly equivalent form 9x2 + xy + 2y2 and write 4x2 − 3xy + 5y2 as the properly

equivalent form 5x2 + 3xy + 4y2. This means that we must find a B (mod 90) such that

B ≡ 1 (mod 18)

B ≡ 3 (mod 10)

B2 = −71 (mod 180).

We can see that B ≡ 73 (mod 90) works so h′(x, y) = 45x2 + 73xy + 30y2 which is properly

equivalent to h(x, y) = 2x2 + xy + 9y2.

(2) We know that the first two congruences have a unique solution B (mod 2aa′) by the Chinese

Remainder Theorem since gcd(a, a′) = 1 so we must now show that this solution satisfies B2 ≡ D

(mod 4aa′). In other words, we must show that B2 −D is a multiple of 4aa′, which we can do by

showing that B2 −D is a multiple of 2a and 2a′. Now notice that

B2 −D ≡ B2 − b2 + 4ac ≡ b2 − b2 ≡ 0 (mod 2a).



8 6. Week 6

Similarly, we have

B2 −D ≡ B2 − b′2 + 4a′c′ ≡ b′2 − b′2 ≡ 0 (mod 2a′)

so we are done.

(3) Notice that if f = ax2 + bxy + cy2, then

Disc(f) = −4 det

(
a b/2

b/2 c

)
.

Now let g(x, y) = f(αx + βy, γx + δy) = a′x2 + b′xy + c′y2. Expanding f(αx + βy, γx + δy) out

gives us

a′ = α2 + bαγ + cγ2

b′ = 2aαβ + bαδ + bβγ + 2cγδ

c′ = aβ2 + bβδ + cδ2.

Therefore (
a′ b′/2

b′/2 c′

)
=

(
α β

γ δ

)(
a b/2

b/2 c

)(
α β

γ δ

)
meaning that

Disc(f) = det

((
α β

γ δ

)(
a b/2

b/2 c

)(
α β

γ δ

))
= (αδ − βγ)2Disc(f).

(5)

(a) Notice that 12 can be written as 12, 4 × 3, 2 × 6, and 2 × 2 × 3. This corresponds to the

abelian groups C12, C4×C3, C2×C6, and C2×C2×C3. However, by the Chinese Remainder

Theorem, the first two groups and the last two groups are each isomorphic so the abelian

groups of order 12 are C12 and C2 × C2 × C3.

(b) Like before we write 24 as 24, 2×12, 3×8, 4×6, 2×2×6, 2×3×4, 2×2×2×3. Accounting

for isomorphisms by the Chinese Remainder Theorem gives us the groups C24, C2 × C12,

C2 × C2 × C6, C2 × C2 × C2 × C3.

(14) We know that x2 + 27y2 represents a prime p if and only if
(
−108
p

)
= 1. This means that

p ≡ 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103 (mod 108). Notice that all of these are 1 (mod 3) and

2 is a cubic residue modulo p.

6 Week 6

(1) For r2(n) we use the fact r2(n) = 4(d1(n)− d3(n)) and for r4(n) we use Jacobi’s theorem to get

n r2(n) r4(n)

1 4 8

2 4 16

3 0 16

4 4 16

5 8 16

6 0 32

25 12 24

100 12 48



9 7. Week 7

(2) Let 8n+ 3 be an integer 3 modulo 8 so we can write it as a sum of three odd squares:

8n+ 3 = (2a+ 1)2 + (2b+ 1)2 + (2c+ 1)2

= 4(a2 + a+ b2 + b+ c2 + c) + 3

= 8

(
a(a+ 1)

2
+

b(b+ 1)

2
+

c(c+ 1)

2

)
+ 3.

Therefore, we see that n can be written as a sum of three triangular numbers. Now the other

direction (proving that if all numbers can be written as a sum of three triangular numbers, then

all numbers 3 modulo 8 can be written as a sum of three squares) is trivial since all steps we have

done are reversible.

(3) Using the notation from before, we have a = 115, b = 682, c = 557, and d = 410. Now

e = a+c
2 = 336 and f = b+d

2 = 546. Then, we have g = gcd(e, f) = 42, s = e
g = 8, and

t = f
g = 13. Finally, we have h = gcd(e − a, b − f) = 17. This gives us the factorization

478349 = (422 + 172)(82 + 132) = 2053× 233 .

(4) We can use a modified Euclidean algorithm for Z[
√
−2] where the norm is defined as

N(x +
√
2iy) = x2 + 2y2. Let j =

√
2i. Now let us compute gcd(619 + 684j, 745 + 618j). We

let a0 = 619 + 684j and a1 = 745 + 618j. To find a2, we must find some k ∈ Z[
√
2i] such that

N(a0 − ka1) ≤ N(a1) so we pick k = 1 which gives us a2 = a0 − a1 = −126 + 66j. Next, we

have a3 = a1 − (−1 − 5j)a2 = −41 + 54j. Continuing this gives us a4 = a2 − (2 + j)a3 = 64 − j,

a5 = a3− (−1+ j)a4 = 21−11j, and a6 = 0. Now since N(21−11j) = 683, we get the factorization

1318873 = 683× 1931 .

7 Week 7

(1) A root r is a double or triple root iff the derivative at r is 0. This means that 3r2 + a = 0 =⇒
r =

√
−a/3 so we have (

−a

3

)3/2
+ a

√
−a

3
+ b = 0.

This means that

b2 =

((
−a

3

)3/2
+ a

√
−a

3

)2

= −a3

27
− a3

3
+

2a3

9
=

−4a3

27

so 4a3 + 27b2 = 0.

(2) We know that if Q = (x, y), then the x coordinate of P is

x4 − 2ax2 − 8bx+ a2

4 (x3 + ax+ b)
.

Notice that multiple values of x can result in the same value of this result so there may be multiple

Q’s such that 2Q = P .

Geometrically, to find Q from P , we must first reflect P across the x-axis, which we can call

P ′, and find tangent lines that pass through P ′. The points at which these lines are tangent to E

are the possible values of Q. Notice that E can be disjoint or one continuous curve. When it is

disjoint we can find at most two tangent lines because of the symmetry about the x-axis. When it

is continuous, we can find at most one tangent line.
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(4) Consider a elliptic curve E with positive rank. This means that the size of E(Q) is infinite.

Now we can pick n of these rational points and find the least common multiple of the denominators

of the x coordinates and y coordinates for these points. Let these number be lx and ly. If E is

of the form y2 = x3 + ax + b, then (y/ly)
2 = (x/lx)

3 + ax/lx + b must have n integer solutions,

namely multiples of the numerators of the x and y coordinates of the n rational points. Therefore

the elliptic curve E′ of the form

y2 =
l2y
l3x

· x3 +
al2y
lx

· x+ bl2y

has n integral points.

(5) Recall, that we can parameterize the rational points on y2 = x2(x+ 1) as (t2 − 1, t(t2 − 1))

for t ∈ Q. Now if t ∈ Z, it is easy to see that we get an infinite number of integral points.

(8) We must find the rational points on the elliptic curve y2 = x3 − 36x. One rational point is

(−3, 9) so adding it to itself must give another rational point:

2 · (−3, 9) =

(
25

4
,−35

8

)

which corresponds to the triangles with sides

(
7

10
,
120

7
,
1201

70

)
. (My calculator doesn’t display

enough digits to repeat this since the fractions’ numerators and denominators become too large.)

8 Week 8

(1) The points in E(F5) are (0,±2), (2,±1), (4,±1), and ∞. Similarly, the points in E(F7) are

(0,±2), (1, 0), (2,±3), (3,±3), (6,±1), and ∞ and the points in E(F11) are (0,±2), (1,±7), (2,±4),

(3,±2), (6,±1), (7,±3), (8,±2), (10,±1), and ∞.

(2)

(a) We can just list the points in E(F5). They are (0,±1), (2,±1), (3,±1), (4,±2) and ∞ which

are 9 points.

(b) As we saw in the previous part (0, 1) and (2, 1) are in E(F5). Next we see

2(0, 1) =

(
1

4
,−9

8

)
.

Adding (0, 1) one more time gives us

(0, 1) +

(
1

4
,−9

8

)
= (72, 611) = (2, 1).

(3)

(a) Since d ∈ F×
p , it must be a generator of Fp so there exist d′, a′, and b′ such that

d′d ≡ 1 (mod p)

a′d ≡ a (mod p)

and

b′d ≡ b (mod p).

Therefore, we have E′ : y2 = d′x3 + a′x+ b′
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(b) Notice that the d′, a′, and b′ are essentially just 1/d, a/d, and b/d modulo p, respectively.

Therefore if f(x) = x3 + ax+ b and f ′(x) = d′x3 + a′x+ b′, we have

f(x) ≡ d′f ′(x) (mod p).

This means that if f(x) = dy2, then

dy2 ≡ d′f ′(x) (mod p) =⇒ f ′(x) ≡ dy (mod p)

so #E′(Fp) = #E(Fp)

(4)

(a) Assume k is not a quadratic residue modulo p. Let f(x) = x3 − kx and for each x ∈ Fp, let

N(x) be the set of points (x, y) ∈ E(Fp). Notice that N(x) = 1 +
(
f(x)
p

)
. Now f(x)f(−x) =

(x3 − kx)(−x3 + kx) = −(x3 − kx)2 so we have(
f(x)

p

)(
f(−x)

p

)
=

(
f(x)f(−x)

p

)
=

(
−1

p

)
.

When p ≡ 3 (mod 4), we see that
(
−1
p

)
= −1 so only one of f(x) and f(−x) is a quadratic

residue modulo p. This means that one of N(x) and N(−x) is 2 and other is 0. On average

this is 1 so Np = p+ 1, including ∞.

9 Week 9

(1) Expanding the elliptic curve gives us

y2 = x3 − (1 + λ)x2 + λx.

Now we use the substitution (x, y) 7→
(
x+ 1+λ

3 , y
)
to get

y2 =

(
x+

1 + λ

3

)3

− (1 + λ)

(
x+

1 + λ

3

)2

+ λ

(
x+

1 + λ

3

)
= x3 +

(
λ− (1 + λ)2

3

)
x+

λ(1 + λ)

3
− 2(1 + λ)3

27
.

This means that

4a3 = 4

(
λ− (1 + λ)2

3

)3

= 4λ3 − 4λ2(1 + λ)2 +
4λ(1 + λ)4

3
− 4(1 + λ)6

27

and

27b2 = 27

(
λ(1 + λ)

3
− 2(1 + λ)3

27

)2

= 27

(
λ2(1 + λ)2

9
− 4λ(1 + λ)4

81
+

4(1 + λ)6

272

)
= 3λ2(1 + λ)2 − 4λ(1 + λ)4

3
+

4(1 + λ)6

27
.



12 9. Week 9

Therefore, the j-invariant is

j(E) = 1728
4λ3 − 4λ2(1 + λ)2 + 4λ(1+λ)4

3 − 4(1+λ)6

27

4λ3 − λ2(1 + λ)2

= 256
λ6 − 3λ5 + 6λ4 − 7λ3 + 6λ2 − 3λ+ 1

λ2(1− λ)2

= 256
(λ2 − λ+ 1)3

λ2(1− λ)2

= 256
(1− µ)3

µ2
.

(2) We must find the short Weierstrass form of y2 + y = x3 − x. First we do the substitution

(x, y) 7→
(
x, y − 1

2

)
to get(

y − 1

2

)2

+

(
y − 1

2

)
= x3 − x2 =⇒ y2 − 1

2
= x3 − x2

This eventually turns into y2 = x3 − 432x+ 8208.
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