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3 1. Week 1

1 Week 1
(1)
n Zl[i] Z|w]
2 [ 1+i)(1—1i) 2
3 3 (14 w)(1 —w)?

(3) Let a = a? + a3 and b = b? + b3. Notice that

ab = (a? + a3)(b3 + b3
= (a1b1)* + (agb2)? + (a1be)* + (agb1)?
= (a1by + agbs)* + (a1by — azhy)?.

(4) Elements in Z[y/—2] are of the form a + b\/2i so for z € Z[\/—2] is N(z) = a® + 2b?. Setting
this equal to 1, we find that b = 0 and a = +1 meaning that the units are .

(5) The norm for z = a + bv/2 € Z[/2] is N(z) = (a + bv/2)(a — bv/2) = a® — 2b%. Setting this
equal to 1 means that a®> — 2b%> = 1 which is just Pell’s equation for n = 2. It has been proven that
if n is not a perfect square, then there are an infinite number of integer solutions to the equation.
More explicitly, if (a,b) is a solution then (4b? + 1,2ab) is also a solution:

(4b* + 1)% — 2(2ab)? = (4b* 4+ 1)% — 8b%(20* + 1)
= 16b* +8b> + 1 — 16b* — 8b> =1

Finally, we see that a solution indeed exists, namely (3,2), so this finishes the proof.

Now for Z[v/3] our equation is a® — 3b> = 1. Just like before, we can notice that if (a,b) is a
solution, then (2a + 3b,a + 2b) is also a solution. Additionally, we have that (2,1) is a solution
which proves that there are an infinite number of integer solutions. Therefore, there are an infinite
number of units in Z[v/2] and Z[/3].

(6) Suppose 7 is not prime. Then it can be written as m = ab where neither a nor b is a
unit. Taking the norm of both sides gives us N(7) = N(ab) = N(a)N(b), using the multiplicative
property of norms. Since neither a nor b is a unit, we know that N(a), N(b) # 1. Therefore we
have factorized N (m) which is supposedly prime into two integers that are neither 1 or N(7), so
this results in a contradiction.

(7) If R =7Z, then N(a) = a and N(f3) = [ so the claim holds. Now if R = Z[i], then we can
have N(a) = N(B) and « and § differ by a phase ¢ # 0. However, there is no guarantee ' € Z[i].

2 Week 2
(1)

(a) From Corollary 1.4, we know that —1 is a quadratic residue of an odd prime p iff p = 1
(mod 4). Since this is not the case for 71, which is an odd prime, we have (;—11) = .

(b) By Proposition 1.8, we see that (&) = since 67 = 3 (mod 8).

(c¢) Using Quadratic Reciprocity, we have

(3)-()-()-(2)-¢)-=



4 2. Week 2

(d) Using Quadratic Reciprocity, we have

(e) Using multiplicativity of Legendre symbols and factoring, we have

(5)-(5) )

Now Quadratic Reciprocity gives us

3)-()-6)-

Now the square of a Legendre symbol is always 1 so (%) = .

(2) Clearly p and ¢ are odd primes so by Quadratic Reciprocity, we have

(6)--()

meaning that ¢ is a QR of p since p is a NQR of ¢q. Therefore, there exists an x € ), such that
22 = ¢ (mod p). The other solution is p — .

(3) We must find the primes p such that 13 is a QR of p. Trivially, we see that p = 2 works. For

13
P

13
BY _(2)
(p ) 13
since 13 is not 3 modulo 4.

First, assume p < 13 so p = 3,5,7,11. Using the first form, we see that p = 3,7 works. Now we
consider the case where p > 13 so we use the second form. The quadratic residues modulo 13 are

odd primes, we must find p such that ( > = 1. By Quadratic Reciprocity, we have

1,3,4,9,10, and 12 so p must equal one of these modulo 13.
(4) Since p # 2, we have

()= G0 - oo

from casework.



5 3. Week 3

(5) We have

where the last step is because of Lemma 2.1 since t < pso t # 0 (mod p).

3 Week 3

(1) Since 11 = —6 (mod 17), we have
<11+3w) B (—6+3w> B (3) <w—2>
17 3 17 17)4\ 17 )4
From Corollary 1.9, we get
II+3w) (w-—2
17 )y \ 17 )5

Now w — 2 = w?(w? — 2w) = w?(—1 — 3w) so

w=2\ _ (W) [(-1-3w

17 ), \17), 17 )5

(2) Let us first compute (9)3 = (“*%)3' We know that a = 3m — 1 but since 7 primary, we

™

have b =0 (mod 3) so b = 3n. Now we have

N(r)—1 (Bm—1)2—(3m—1)(3n) + (3n)% — 1

3 3
= 3m? — 2m — 3mn + n + 3n>

= 3(m* — mn +n?) — 2m +n.

( w ) — w72m+n.
a + bw

(3) Let g be a primitive root of p i.e. every a € [F,, can be written as a = g* for some k. Therefore,

p—2
a = gkn.
.

a€lFy

This gives us

we have

Next we multiply both sides by 1 — ¢* to get

2

1-g" > a"=1-g"> g"=1-g""V" =0 (mod p)
a€lFp 0

bS]
|

e
Il



6 4. Week 4

by Fermat’s Little Theorem. Now since 1 < n < p — 2, we know that 1 — g* # 0 (mod p) so the
result follows. (How do I do this with cubic reciprocity?)

Now a polynomial with coefficients in [F,, of degree at most p — 2 with f(0) = 0 is of the form
ap—2P2 + ap_3aP73 + -+ + 1z s0

Zf(a):ap_g ZaP*2+ap_3ZaP*3+...Za:0,

aclFp aclFp a€lfy a€lFy

4 \Week 4

(1) First, we see that 2 + y? is always non-negative. Additionally, if the quadratic form is 0, the
only way for this to happen is if z = y = 0 so it’s positive definite. Similarly, we see that —22 — 12
is always negative and equals 0 only if z = y = 0 so this quadratic form is negative definite. Next
we move on to 2 — 2y? which can represent both positive and negative numbers so it’s indefinite.

(2) We can factor the quadratic form into 2 — 42y + 4y? = (z — 2y)?. Now notice that any
integer can be written in the form x — 2y which means that any perfect square can be represented
by 2% — dxy + 412,

(4)
(a) We use the bound a < \/—D/3 to get that a < 1. Clearly a # 0 since this implies b = 0 and

the discriminant would be 0. If ¢ = 1, we know that either b = 0 or b = 1. The former case
implies —4c = —11 so c is not an integer which is a contradiction. Now when a =b =1, we
have 1 —4c = —11 = ¢ = 3. This means that h(—11) = 1.

(b) Using the same bound from before gives us a < 2. Now the cases we must consider are
(a,b) = (1,0),(1,1),(2,0),(2,-1),(2,1),(2,2). For each of these cases we get the equations

—4c = —17
1—4c=-17
—8c = —17
1—8c=-17
4 —8c=—-17

which all produce non-integer solutions for c¢. Therefore, we find that h(—17) = 0.

(5) Let f(z,y) = ax?® + bxy + cy? and g(z,y) = a’z? + b'zy + 'y? be equivalent quadratic forms.
This means that for a, 8,7,6 € Z such that ad — fy = +1,

9(@,y) = flax + By, vz + dy)
= a(az + By)? + blax + By) (v + 8y) + c(ya + dy)?
= (aa? + bary + )% + (2aaf + bad + by + 2¢y8)xy + (af® + bBS + c62)y>.
Therefore,
a = a® + bay + cy?
b = 2aa3 + bad + bBy + 2¢y6
d = aB? + b3 + 2.



7 5. Week 5

Now one way to write the discriminant of a quadratic form is

Disc(f) = —4 det (b?2 bé 2) .

Now notice that

Disc(g) = —4 det (b,“/; blc/,2> = —4det <<: g) <b;‘2 bé 2) <: §>> = Disc(f)

so we are done.

(7) A simple example is that 3 and 21 can be written as a sum of three perfect square: 3 =
12 + 12 + 1% and 21 = 12 + 22 + 42, However, notice that 63 cannot be written as a sum of three
squares. (I don’t know how to mathematically prove this but with a computer we can list out all
numbers of the form a? + b? + ¢? where a,b,c < 8 and 63 is not in this list).

5 Week 5

(1)
(a)

First we see that both quadratic forms have discriminant —47 the hypothesis in Lemma 1 is
satisfied. Therefore, we must now find a B (mod 12) such that

B=1 (mod4)
=—-1 (mod 6)
B%* = —47 (mod 24).

We can see that B =5 (mod 12) so ' (z,y) = 62% + 5xy + 3y? which properly equivalent to
h(z,y) = 322 + 2y + 49>

For this case, notice that the hypothesis of Lemma 1 does not hold so we write 222 — xy 4 9y?
as the properly equivalent form 922 + zy + 2y? and write 422 — 32y + 53 as the properly
equivalent form 522 + 32y + 4y%. This means that we must find a B (mod 90) such that

B=1 (mod 18)
B =3 (mod 10)
B?=—71 (mod 180).

We can see that B = 73 (mod 90) works so h'(z,y) = 4522 + 73zy + 30y? which is properly
equivalent to h(x,y) = 222 + zy + 9y%.

(2) We know that the first two congruences have a unique solution B (mod 2aa’) by the Chinese
Remainder Theorem since ged(a,a’) = 1 so we must now show that this solution satisfies B?> = D

(mod 4aa’). In other words, we must show that B? — D is a multiple of 4aa’, which we can do by
showing that B? — D is a multiple of 2a and 2a’. Now notice that

B*-D=B>-p*+4ac=0*-b*=0 (mod 2a).



8 6. Week 6

Similarly, we have
B - D=B?-1t?+4dd =0*-bv?=0 (mod 2d')

so we are done.
(3) Notice that if f = ax? + bwy + cy?, then

Disc(f) = —4det (b% bﬁ 2) .

Now let g(x,y) = f(az + By, vz + 6y) = a'x? + b'zy + 'y?. Expanding f(ax + By, vz + Jy) out
gives us
a = a?+ bay + cy?
b = 2aa3 + bad + bBy + 2¢v6
d = af?® + bBs + 6>

W )= (96 ) 5)

o -an (2 2) (3 ), ) -t
(5)

(a) Notice that 12 can be written as 12, 4 x 3, 2 x 6, and 2 x 2 x 3. This corresponds to the
abelian groups Cta, Cy X C3, Cy x Cg, and Cy x Cy x C3. However, by the Chinese Remainder
Theorem, the first two groups and the last two groups are each isomorphic so the abelian
groups of order 12 are C1o and Cs x Cy x Cf.

Therefore

meaning that

(b) Like before we write 24 as 24, 2x 12,3 x8,4%x6,2x2x6,2x3x4,2x2x2x3. Accounting
for isomorphisms by the Chinese Remainder Theorem gives us the groups Cay, Co X Cia,
C2X02X06,02X02X02X03.

(14) We know that z? + 27y represents a prime p if and only if (%) = 1. This means that
p=7,13,19,31,37,43,61,67,73,79,97,103 (mod 108). Notice that all of these are 1 (mod 3) and
2 is a cubic residue modulo p.

6 Week 6
(1) For r2(n) we use the fact ra(n) = 4(d1(n) — ds(n)) and for r4(n) we use Jacobi’s theorem to get
n | re(n) | r4(n)
1 4 8
2 4 16
3 0 16
4 4 16
5 8 16
6 0 32
25 12 24
100 12 48




9 7. Week 7

(2) Let 8n + 3 be an integer 3 modulo 8 so we can write it as a sum of three odd squares:

8n+3=(2a+1)%+ 20+ 1)+ (2c+1)?
=4(a*+a+?+b+c? +e)+3

o fala+1) bb+1) c(c+1)
—8< 5 + 5 + 5 >—|—3.

Therefore, we see that n can be written as a sum of three triangular numbers. Now the other
direction (proving that if all numbers can be written as a sum of three triangular numbers, then
all numbers 3 modulo 8 can be written as a sum of three squares) is trivial since all steps we have
done are reversible.

(3) Using the notation from before, we have a = 115, b = 682, ¢ = 557, and d = 410. Now
e = %8¢ =336 and f = % = 546. Then, we have g = ged(e, f) = 42, s = S = 8, and

t = g = 13. Finally, we have h = ged(e — a,b — f) = 17. This gives us the factorization

478349 = (422 + 17%)(8% + 13%) = | 2053 x 233 |.

(4) We can use a modified Euclidean algorithm for Z[\/—2] where the norm is defined as
N(z + V/2iy) = 2% +2y%. Let j = v/2i. Now let us compute ged(619 4 6844, 745 + 6185). We
let ap = 619 4 6845 and a; = 745 + 6185. To find az, we must find some k € Z[v/2i] such that
N(ap — ka;) < N(ap) so we pick & = 1 which gives us az = a9 — a1 = —126 + 665. Next, we
have ag = a1 — (—1 — 5j)ag = —41 + 54j. Continuing this gives us a4 = as — (2 + j)az = 64 — j,
as = a3 — (—1+7j)aqg =21 —11j, and ag = 0. Now since N (21 —115) = 683, we get the factorization

1318873 =683 x 1931

7 Week 7

(1) A root r is a double or triple root iff the derivative at r is 0. This means that 37 +a =0 =
r = +/—a/3 so we have

(—2)3/2 +a —% +b=0.

This means that

b2— <_g)3/2_}_a _g 2__@_62_{_2;&_—4(9
N a 3 9 27

so 4a® +27b* = 0.
(2) We know that if @ = (z,y), then the x coordinate of P is

2t — 2a22% — 8bx + a2
4 (23 + ax +b)

Notice that multiple values of x can result in the same value of this result so there may be multiple
(@’s such that 2Q) = P.

Geometrically, to find @) from P, we must first reflect P across the z-axis, which we can call
P’, and find tangent lines that pass through P’. The points at which these lines are tangent to F
are the possible values of ). Notice that E can be disjoint or one continuous curve. When it is
disjoint we can find at most two tangent lines because of the symmetry about the z-axis. When it
is continuous, we can find at most one tangent line.



10 8. Week 8

(4) Consider a elliptic curve E with positive rank. This means that the size of F(Q) is infinite.
Now we can pick n of these rational points and find the least common multiple of the denominators
of the x coordinates and y coordinates for these points. Let these number be [, and [,. If F is
of the form y? = 23 + ax + b, then (y/l,)* = (2/l;)* + az/l, + b must have n integer solutions,
namely multiples of the numerators of the x and y coordinates of the n rational points. Therefore
the elliptic curve E’ of the form

2 2
y2:§§-x3—|—aliy-:c+blz
has n integral points.

(5) Recall, that we can parameterize the rational points on 3? = z2(x 4+ 1) as (t2 — 1,t(t*> — 1))
for t € Q. Now if t € Z, it is easy to see that we get an infinite number of integral points.

(8) We must find the rational points on the elliptic curve y? = 23 — 36x. One rational point is
(—3,9) so adding it to itself must give another rational point:

2. (~3,9) = <i5—385>

7 120 1201
which corresponds to the triangles with sides < — > . (My calculator doesn’t display

107 77 70
enough digits to repeat this since the fractions’ numerators and denominators become too large.)

8 Week 8

(1) The points in E(IF‘5) are (
(0,42), (1,0), (2,£3), (3, 43), (
(3,£2), (6,£1), (7,+£3), (8,£2
(2)
(a) We can just list the points in E(F5). They are (0,£1), (2,£1), (3, £1), (4, £2) and co which
are 9 points.

0,+2), (2,£1), (4,£1), and co. Similarly, the points in E(FF7) are
6,+1), and oo and the points in E(Fy;) are (0, £2), (1,+7), (2, £4),
), (10,£1), and oo.

(b) As we saw in the previous part (0,1) and (2,1) are in F(F5). Next we see

2(0,1) = (i-Z) .

Adding (0,1) one more time gives us
1 9
(0,1) + (—) = (72,611) = (2,1).
4" 8
(3)
a) dince d € , 1t must be a generator o so there exist d',a’, an such that
Since d € F);, i b fF, h ist d’,a’, and V' such th
dd=1 (mod p)
dd=a (mod p)

and
V¥d=b (mod p).

Therefore, we have | E' : y? = d'a + d'z +
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(b) Notice that the d’, a’, and V' are essentially just 1/d, a/d, and b/d modulo p, respectively.
Therefore if f(z) = 23 4+ ax + b and f'(z) = d'z3 + o’z + b, we have

flz)=d'f'(z) (mod p).
This means that if f(z) = dy?, then
dy’ =d'f'(z) (mod p) = f'(z)=dy (mod p)
S0 #E/(Fp) = #E(F,)
(4)
(a) Assume k is not a quadratic residue modulo p. Let f(x) = 2® — kx and for each x € F,, let

N(z) be the set of points (z,y) € E(F,). Notice that N(z) =1+ (%) Now f(z)f(—z) =

(23 — kx)(—23 + kx) = — (23 — kx)? so we have

(2)(59)- (24)- ()

When p = 3 (mod 4), we see that (_71) = —1 so only one of f(z) and f(—=x) is a quadratic

residue modulo p. This means that one of N(x) and N(—=x) is 2 and other is 0. On average
this is 1 so N, = p + 1, including oo.

9 Week 9

(1) Expanding the elliptic curve gives us
y? =23 — (14 \)z? + Az
Now we use the substitution (z,y) — (a: + %, y) to get

1+ A\° 1+A)? 1+ A
y2:(a§+—;) —(1+)\)<x+—§> +)\<x+_§)

(1+N)? ML+ 2(14+2)3
:x3—|—<)\— 3 )ﬂc+ 3 - T

This means that

4 = 4 (A— (H?)A)Q)S

AT+ 40 +0)°
3 27

= 4N —4N2(1+ N2 +

and

AML4A) 201+ 23\
27h% =2 —
7 7( 3 27

P NA+A)? aa+ N N 4(1+N)8
B 9 81 272

s A1+ N N 41+ N)°

=3A%(1+\) 3 5



12 9. Week 9

Therefore, the j-invariant is

4)\3 . 4)\2(1 + )\)2 + 4>\(1?—)|—)\)4 _ 4(1;—7)\)6
403 — N2(1 + \)2
A 3N Mt — TN 6N —3N+1
A2(1 - \)2
A2 = A+1)3
A2(1— \)2
(1—p)®
po

J(E) = 1728

= 256

= 256
= 256

(2) We must find the short Weierstrass form of y* +y = 2% — x. First we do the substitution
(x,y) — (a:,y — %) to get

1)? 1 3 2 2 1 3 2
(y—2> +<y—2>—x -z =y —i—a: -

This eventually turns into y? = 23 — 432z + 8208.
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